基于单片机生物培养液温度控制系统毕业设计文档格式.docx

上传人:b****3 文档编号:15070889 上传时间:2022-10-27 格式:DOCX 页数:42 大小:707.74KB
下载 相关 举报
基于单片机生物培养液温度控制系统毕业设计文档格式.docx_第1页
第1页 / 共42页
基于单片机生物培养液温度控制系统毕业设计文档格式.docx_第2页
第2页 / 共42页
基于单片机生物培养液温度控制系统毕业设计文档格式.docx_第3页
第3页 / 共42页
基于单片机生物培养液温度控制系统毕业设计文档格式.docx_第4页
第4页 / 共42页
基于单片机生物培养液温度控制系统毕业设计文档格式.docx_第5页
第5页 / 共42页
点击查看更多>>
下载资源
资源描述

基于单片机生物培养液温度控制系统毕业设计文档格式.docx

《基于单片机生物培养液温度控制系统毕业设计文档格式.docx》由会员分享,可在线阅读,更多相关《基于单片机生物培养液温度控制系统毕业设计文档格式.docx(42页珍藏版)》请在冰豆网上搜索。

基于单片机生物培养液温度控制系统毕业设计文档格式.docx

方案一:

采用纯硬件的闭环控制系统。

该系统的优点在于速度较快,但可靠性比较差控制精度比较低、灵活性小、线路复杂、调试、安装都不方便。

且要实现题目所有的要求难度较大。

方案二:

FPGA/CPLD或采用带有IP内核的FPGA/CPLD方式。

即用FPGA/CPLD完成采集,存储,显示及A/D等功能,由IP核实现人机交互及信号测量分析等功能。

这种方案的优点在于系统结构紧凑,可以实现复杂的测量与与控制,操作方便;

缺点是调试过程复杂,成本较高。

方案三:

单片机与高精度温度传感器结合的方式。

即用单片机完成人机界面,系统控制,信号分析处理,由前端温度传感器完成信号的采集与转换。

这种方案克服了方案一、二的缺点,所以本课题任务是基于单片机和温度传感器实现对温度的控制。

1.4温度控制系统结构图及总述

PC机

报警电路

高阻抗电阻丝

加热控制电路

生物培养皿

AT89C51单片机

LED显示

半导体制冷片

降温控制电路

键盘电路

温度传感电路

信号放大电路

A/D转换

 

图1生物培养液微机温度控制系统结构图

要设计完成一个生物培养液微型计算机温度控制系统,我们可以把它的组成分成以下几个部分:

温度检测短路,信号放大短路,A/D转换电路,加热控制电路,降温电路,报警电路,键盘(温度设置)模块和LED(温度显示)模块,单片机判断输入温度信号与设定的温度的差距,再通过改进的PID算法给以调节。

放大器的则是用来放大采集装置采集的温度,由于测量的温度一般较小,所以要先用放大器进行放大再输入。

A/D转换器是用来把采集到的模拟电压信号量转换成单片机机可以识别的数字信号。

高阻抗加热丝和半导体制冷片是该温度控制系统的温度调节部分,当采集温度不符合要求时,则通过计算机判断后进行调节。

半导体制冷片用来降温,高阻抗加热丝用来加温。

显示部分则用来显示生物培养液微的温度以及设定时设置的温度值。

温度采集装置采用热电阻,LM35来采集培养液的温度,来看以看是否达到要求。

通过以上的几个部分的组合,则组成了一个生物培养液微型计算机温度控制系统。

生物培养液微型计算机温度控制系统的结构图如图-1所示

2系统的硬件设计

2.1单片机选择

单片机的选择在整个系统设计中至关重要,AT89C51具有大内存、高速率、通用性、价格便宜等要求,所以本课题选择AT89C51作为主控芯片。

AT89C51如图-2是一种带4K字节FLASHC存储器(FPEROM—FlashProgrammableandErasableReadOnlyMemory)的低电压、高性能CMOS8位微处理器,俗称单片机。

AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。

单片机的可擦除只读存储器可以反复擦除1000次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。

AT89C51芯片具有以下特性:

·

与MCS-51兼容

4K字节可编程FLASH存储器  

寿命:

1000写/擦循环  

数据保留时间:

10年  

全静态工作:

0Hz-24MHz  

三级程序存储器锁定  

128×

8位内部RAM  

32可编程I/O线  

两个16位定时器/计数器  

5个中断源  

可编程串行通道  

低功耗的闲置和掉电模式 

片内振荡器和时钟电路

AT89C51芯片管脚说明:

VCC:

供电电压。

  

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P0口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

  P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2/INT0(外部中断0)

P3.3/INT1(外部中断1)

P3.4T0(记时器0外部输入)

P3.5T1(记时器1外部输入)

P3.6/WR(外部数据存储器写选通)

P3.7/RD(外部数据存储器读选通)

 P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

  

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;

/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

芯片擦除:

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。

在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。

在闲置模式下,CPU停止工作。

但RAM,定时器,计数器,串口和中断系统仍在工作。

在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

结构特点:

8位CPU;

片内振荡器和时钟电路;

32根I/O线;

外部存贮器寻址范围ROM、RAM64K;

2个16位的定时器/计数器;

5个中断源,两个中断优先级;

全双工串行口;

布尔处理器;

图-2

(1)复位使单片机处于起始状态,并从该起始状态开始运行。

AT89C51的RST引脚为复位端,该引脚连续保持2个机器周期以上高电平,则可使单片机复位。

复位有上电复位和按键电平复位。

本设计中复位电路采用按键复位方式。

如下图

2.2温度检测电路

温度检测电路包括温度传感器、变送器和A/D转换三部分。

2.2.1温度传感器电路

传感器的定义是:

能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:

1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。

按传感器输出信号的性质分类,可分为:

输出为开关量的开关型传感器;

输出为模拟型传感器;

输出为脉冲或代码的数字型传感器。

传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。

表征传感器静态特性的主要参数有:

线性度、灵敏度、分辨力和迟滞等。

传感器的动态特性,是指传感器在输入变化时,它的输出的特性。

在实际工作中,传感器的动态特性常用它对

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1