圆柱体和立方体试件强度换算关系Word文档下载推荐.docx

上传人:b****3 文档编号:15055747 上传时间:2022-10-27 格式:DOCX 页数:7 大小:19.85KB
下载 相关 举报
圆柱体和立方体试件强度换算关系Word文档下载推荐.docx_第1页
第1页 / 共7页
圆柱体和立方体试件强度换算关系Word文档下载推荐.docx_第2页
第2页 / 共7页
圆柱体和立方体试件强度换算关系Word文档下载推荐.docx_第3页
第3页 / 共7页
圆柱体和立方体试件强度换算关系Word文档下载推荐.docx_第4页
第4页 / 共7页
圆柱体和立方体试件强度换算关系Word文档下载推荐.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

圆柱体和立方体试件强度换算关系Word文档下载推荐.docx

《圆柱体和立方体试件强度换算关系Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《圆柱体和立方体试件强度换算关系Word文档下载推荐.docx(7页珍藏版)》请在冰豆网上搜索。

圆柱体和立方体试件强度换算关系Word文档下载推荐.docx

对立方体与圆柱体试件而言,受摩擦力效应,支座与试件接触面之间的摩擦力将对混凝土试件的横向膨胀起着约束作用,使混凝土强度提高,这种约束作用离试件端部越远影响越小,标准圆柱体试件(Φ150㎜×

300㎜)的高度为标准立方体试件(150㎜×

150㎜×

150㎜)的二倍,其端部所受摩擦约束作用远远小于立方体试件,故其抗压强度低于立方体试件抗压强度;

另外,圆柱体试件顶面(受压面)尽管按照标准要求进行端面处理,在某种程度上说还是粗糙的,并非真正的平面;

因引,其光滑程度(平整度)有可能产生应力集中,导致混凝土抗压强度降低,这种端面不平整引起的负面效果,也是影响圆柱体抗压强度的一个不利因素(与侧面受压的立方体试件相比).

对于标准圆柱体试件抗压强度f’cc,15和标准立方体试件抗压强度fcc,15之间的关系,有的资料①认为:

f’cc,15=(0.79~0.81)fcc,15;

也有资料②提出圆柱体强度换算成立方体试件强度的参用公式:

Fcc=1.25f’cc

式中:

fcc—换算成边长等于圆柱体直径的立方体强度(Mpa)f’cc—高径比为2的圆柱体强度(Mpa)

国际标准ISO/DID7034《硬化混凝土芯样的钻取、检查和抗压试验》针对二者的抗压强度,作出不同的强度等级划分:

ISO按抗压强度划分的混凝土等级表(表1)

混凝土强度等级混凝土强度标准值(Mpa)f’cc,15/fcc.15

圆柱体试件Φ150㎜×

300㎜立方体试件150㎜×

150㎜

C2/2.52.02.50.80

C4/54.05.0

C6/7.56.04.5

C8/108

.010.0

C10/12.510.012.5

C12/1512.015.0

C16/2016.020.0

C20/2520.025.0

C25/3025.030.00.83

C30/3530.035.00.86

C35/4035.040.00.88

C40/4540.045.00.88

C45/5045.050.00.90

C50/5550.055.00.90

从ISO混凝土强度等级表中推算的f’cc,15/fcc.15可知:

在较低等级的混凝土中,圆柱体与立方体试件抗压强度的比较值较大,有20%左右的差距;

随着混凝土强度等级的提高,二者的强度比值有渐趋于1的可能性.对立方体抗压强度等级C55以下的普通混凝土,由ISO划分的抗压强度等级可知:

f’cc,15=(0.80~0.90)fcc.15

不管圆柱体与立方体试件之间的强度比值具体是多少,都表明立方体与圆柱体试件抗压强度之间的不对等性;

也表明不同方法测得的力学性能数值之间通常没有单一的相互关系;

立方体及圆柱体测定的抗压强度,其比值(圆柱体强度/立方体强度)不是常数,而是随着混凝土强度的不同而改变.对这一事实,国家相关标准应作出相应的说明,以免在涉外工程中产生不必要的麻烦,乃至引起工程纠纷.

二.圆柱体试件与芯样试件高径比分析:

国际标准ISO及我国标准都明确规定:

ф150㎜×

300㎜为圆柱体的标准试件,ф100㎜×

200㎜和ф200㎜×

400㎜为圆柱体非标准试件,故可认为圆柱体试件标准高径比为2;

然而《钻芯法检测混凝土强度技术规程》CECS03:

88(以下简称《钻芯法》)中对芯样(芯样试件也属于圆柱体试件)高径比的规定与此有所不同:

“第4.0.4条:

芯样抗压试件的高度和直径之比应在1~2的范围内.

第4.0.1条文说明:

...根据国内外的一些试验证明,高度和直径均为100㎜的芯样与边长为150㎜立方体试块的强度是比较接近的......因此,宜采用直径和高度均为100㎜的芯样试件.

6.0.3条:

高度和直径均为100㎜或150㎜芯样试件的抗压强度测试值,可直接作为混凝土的强度换算值.”

以上条文表明,芯样试件(圆柱体试件)的高径比宜取1.鉴于试件高径比对抗压强度有较大影响,在同一标准取样、制作、加工、养护(注:

同一取样、制作试件进行标准养28d)后,一部分的情况下,了解高径比在1~2时α的相关换算系数(表4).高径比1~2时,α以h/d=2为基准,则各个取值与美、英标准及JTJ053-94中的圆柱体强度修正系数差距较大.(表4)

高径比(h/d)1.01.11.21.31.41.51.61.71.81.92.0

α0.810.840.860.890.910.930.940.960.970.981.00

(注:

表4中α数值,以表3中α的各个数值分别除以1.24得出.)

有关资料②推荐,非标准高径比试件进行试验时强度修正的参用关系式:

fλ-2=fλ-x

式中fλ-2--换算成高径比为2时的混凝土强度(Mpa)

fλ-x--试件测得的强度值(Mpa)λx--试件的实际高径比.

另外,在相同制作、养护、尺寸条件下,从芯样试件与圆柱体试件之间的等同关系,也引出一些疑问:

1.钻芯试样不等同于圆

柱体试件时:

钻芯法与圆柱体试件受压法进行混凝土强度检测时,以何种检测方法为准?

在芯样试件强度换算公式合理、适用的情况下,该公式对不同直径、高径比(1~2)的芯样试件都适用;

非标准圆柱体与标准圆柱体试件之间也应采用类似方法进行强度计算,二者之间的折算系数1.05及0.95毫无存在根据.

2.钻芯试样等同于圆柱体试件时:

芯样试件与圆柱体试件的高径比之间,何种规定正确?

圆柱体计算公式与芯样试件强度换算公式的选用,该如何进行取舍?

在试件尺寸效应对检测混凝土强度有影响的情况下,芯样尺寸效应对强度的影响也应进行考虑.根据圆柱体标准试件与非标准试件的抗村强度关系f’cc.15=0.95f’cc.10,高度和直径均为100㎜或150㎜芯样试件的抗压强度测试值之间也应该存在有尺寸换算系数(《钻芯法》第6.0.2条文说明也指明了这一点),故二者都不可能直接作为标准立方体试件混凝土的强度换算值.

三.立方体与芯样试件强度对比:

钻芯法检测混凝土强度的目的,是将钻芯法测得的芯样强度,换算成相应于测试龄期的、边长为150㎜的立方体试块的抗压强度;

因此,芯样试件的混凝土强度换算值,只代表构件混凝土的芯样试件,在测试龄期的抗压结果转换成边长为150㎜立方体试块的实际强度值(《钻芯法》第6.0.1条及条文说明).在制作、养护条件相同情况下,圆柱体与芯样试件应该彼此等同;

受圆柱体与立方体试件之间强度关系的影响,芯样试件的换算强度与立方体试件强度之间的强度关系,将有别于《钻芯法》中的说明.在此对有关疑问进行分析:

1.标准芯样尺寸分析:

在《混凝土结构工程施工质量验收规范》GB50204中,是以边长为150㎜立方体试块的强度作为混凝土强度验收与评定标准,因此,芯样强度在转换成立方体试块的强度时,由于尺寸效应的影响,这种转换包括两部分内容(《钻芯法》第6.0.2条文说明):

一.非标准尺寸(直径、高径比)芯样强度换算成标准尺寸芯样强度;

二.标准尺寸芯样强度换算成标准尺寸立方体试块强度.

作为圆柱体试件,一部分钻芯抽取芯样试件;

本文所论述的与圆柱体试件同条件制作养护的芯样试件及其抗压强度都建立于此种方式的情况下,依据《钻芯法》第6.0.3条规定,对圆柱体与芯样试件之间的强度进行分析推论立方体抗压强度等级在C55及其以下的普通混凝土)

1).非标准圆柱体(Φ100㎜×

200㎜)与芯样试件(Φ100㎜×

100㎜)之间的强度分析:

由于f’cc,15=(0.79~0.81)fcc,15或f’cc,15=(0.80~0.90)fcc,15,f’cc.10=1.05f’cc.15,fccu.10≈fcc,15,故f’cc.10=1.05f’cc.15=1.05(0.79~0.81)fcc.15≈1.05(0.79~0.81)fccu.10=(0.83~0.85)fccu.10)或f’cc.10=1.05f’cc.15=1.05(0.80~0.90)fcc.15≈1.05(0.80~0.90)fccu.10=(0.84~0

.95)fccu.10

2).标准圆柱体(Φ150㎜×

300㎜)与芯样试件(Φ150㎜×

150㎜)之间的强度分析:

由于f’cc,15=(0.79~0.81)fcc,15或f’cc=(0.80~0.90)fcc,15,fccu.15≈fcc.15,故f’cc,15=(0.79~0.81)fcc,15=(0.79~0.81)fccu.15或f’cc.15=(0.80~0.90)fcc.15=(0.79~0.81)fccu.15

(f’cc,15:

Φ150㎜×

300㎜标准圆柱体试件抗压强度Mpa;

f’cc,10:

Φ100㎜×

200㎜非标准圆柱体试件抗压强度Mpa;

fccu.10:

100㎜芯样试件强度Mpa;

fcc.15:

标准立方体试件抗压强度Mpa;

fccu.15:

150㎜芯样试件强度Mpa)

圆柱体试件的高径比分别为1和2时,由以上强度分析可知:

对非标准圆柱体(Φ100㎜×

100㎜)之间的强度误差系数为(0.83~0.85)或(0.84~0.95)

;

标准圆柱体(Φ150㎜×

150㎜)之间的强度误差系数为(0.79~0.81)或(0.80~0.90);

这都说明高径比对混凝土造成的强度误差,不仅随着受压面积的增大而增大,而且也随着混凝土强度的增长而减小.因此,在强度误差系数如此大的情况下,“高径比为2”(《钻芯法》中α的取值以1为基准)或“标准圆柱体高径比为2”(《力学性能标准》规定)规定的准确性、合理性,尚值的讨论.

圆柱体高径比对抗压强度的影响,美国、英国的国家标准规定了相关强度修正系数(表2),我国《公路工程水泥混凝土试验规程》JTJ053-94第4.23.6.3条也对此作出相关的修正说明;

(表2)

高径比强度修正系数

美国ASTMC42-68英国B.S.1881;

1970JTJ053-94(注)

2.001.001.001.00

1.750.990.980.98

1.500.970.960.96

1.250.940.940.93

1.000.910.920.89

当高径比为表列中间值是,修正系数可用插入法求得)

我国《钻芯法》也对芯样试件抗压强度换算系数α作了相应的规定(见表3):

(表3)

高径比(h/

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1