机器人的控制系统PPT推荐.ppt
《机器人的控制系统PPT推荐.ppt》由会员分享,可在线阅读,更多相关《机器人的控制系统PPT推荐.ppt(163页珍藏版)》请在冰豆网上搜索。
例如,机器人的手部运动是所有关节的合成运动,要使手部按照一定的轨迹运动,就必须控制各关节协调运动,包括运动轨迹、动作时序等多方面的协调。
一、机器人控制系统的特点
(2)运动描述复杂,机器人的控制与机构运动学及动力学密切相关。
描述机器人状态和运动的数学模型是一个非线性模型,随着状态的变化,其参数也在变化,各变量之间还存在耦合。
因此,仅仅考虑位置闭环是不够的,还要考虑速度闭环,甚至加速度闭环。
在控制过程中,根据给定的任务,应当选择不同的基准坐标系,并做适当的坐标变换,求解机器人运动学正问题和逆问题。
此外,还要考虑各关节之间惯性力、哥氏力等的耦合作用和重力负载的影响,因此,系统中还经常采用一些控制策略,如重力补偿、前馈、解耦或自适应控制等。
一、机器人控制系统的特点(3)具有较高的重复定位精度,系统刚性好。
除直角坐标机器人外,机器人关节上的位置检测元件不能安装在末端执行器上,而应安装在各自的驱动轴上,构成位置半闭环系统。
但机器人的重复定位精度较高,一般为0.1mm。
此外,由于机器人运行时要求运动平稳,不受外力干扰,为此系统应具有较好的刚性。
(4)信息运算量大。
机器人的动作住往可以通过不同的方式和路径来完成,因此存在一个最优的问题,较高级的机器人可以采用人工智能的方法,用计算机建立起庞大的信息库,借助信息库进行控制、决策管理和操作。
根据传感器和模式识别的方法获得对象及环境的工况,按照给定的指标要求,自动选择最佳的控制规律。
一、机器人控制系统的特点(5)需采用加(减)速控制。
过大的加(减)速度会影响机器人运动的平稳性,甚至使机器人发生抖动,因此在机器人起动或停止时采取加(减)速控制策略。
通常采用匀加(减)速运动指令来实现。
此外,机器人不允许有位置超调,否则将可能与工件发生碰撞。
因此,要求控制系统位置无超调,动态响应尽量快。
一、机器人控制系统的特点(6)工业机器人还有一种特有的控制方式示教再现控制方式。
当要工业机器人完成某作业时,可预先移动工业机器人的手臂来示教该作业顺序、位置及其他信息,在此过程中把相关的作业信息存储在内存中,在执行任务时,依靠工业机器人的动作再现功能,可重复进行该作业。
此外,从操作的角度来看,要求控制系统具有良好的人机界面,尽量降低对操作者的要求。
因此,多数情况要求控制器的设计人员不仅要完成底层伺服控制器的设计,还要完成规划算法的编程。
总之,工业机器人控制系统是一个与运动学和动力学密切相关的、紧耦合的、非线性的多变量控制系统。
随着实际工作情况的不同,可以采用各种不同的控制方式。
一、机器人控制系统的特点一、机器人控制系统的特点机器人控制系统是机器人的主要组成部分,用于控制操作机来完成特定的工作任务,其基本功能有示教再现功能、坐标设置功能、与外围设备的联系功能、位置伺服功能。
(1)示教-再现功能。
机器人控制系统可实现离线编程、在线示教及间接示教等功能,在线示教又包括示教盒示教和导引示教两种情况。
在示教过程中,可存储作业顺序、运动路径、运动方式、运动速度及与生产工艺有关的信息,在再现过程中,能控制机器人按照示教的加工信息执行特定的作业。
二、机器人控制系统的功能
(2)坐标设置功能。
一般的工业机器人控制器设置有关节坐标、绝对坐标、工具坐标及用户坐标4种坐标系,用户可根据作业要求选用不同的坐标系并进行坐标系之间的转换。
(3)与外围设备的联系功能。
机器人控制器设置有输入/输出接口、通信接口、网络接口和同步接口,并具有示教盒、操作面板及显示屏等人机接口。
此外,还具有多种传感器接口,如视觉、触觉、接近觉、听觉、力觉(力矩)传感器等多种传感器接口。
(4)位置伺服功能。
机器人控制系统可实现多轴联动、运动控制、速度和加速度控制、力控制及动态补偿等功能。
在运动过程中,还可以实现状态监测、故障诊断下的安全保护和故障自诊断等功能。
二、机器人控制系统的功能1.点到点控制方式点到点控制方式点到点控制方式用于实现点的位置控制,其运动是由一个给定点到另一个给定点,而点与点之间的轨迹却无关紧要。
因此,这种控制方式的特点是只控制工业机器人末端执行器在作业空间中某些规定的离散点上的位姿。
控制时只要求工业机器人快速、准确地实现相邻各点之间的运动,而对达到目标点的运动轨迹则不做任何标记,如自动插件机,在贴片机上安插元件、点焊、搬运、装配等作业。
这种控制方式的主要技术指标是定位精度和运动所需的时间,控制方式比较简单,但要达到较高的定位精度则较难。
三、机器人的控制方式2.连续轨迹控制方式连续轨迹控制方式连续轨迹控制方式用于指定点与点之间的运动轨迹所要求的曲线,如直线或圆弧。
这种控制方式的特点是连续地控制工业机器人末端执行器在作业空间中的位姿,使其严格按照预先设定的轨迹和速度在一定的精度要求内运动,速度可控,轨迹光滑,运动平稳,以完成作业任务。
工业机器人各关节连续、同步地进行相应的运动,其末端执行器可形成连续的轨迹。
这种控制方式的主要技术指标是机器人末端执行器的轨迹跟踪精度及平稳性。
在用机器人进行弧焊、喷漆、切割等作业时,应选用连续轨迹控制方式。
三、机器人的控制方式3.速度控制方式速度控制方式三、机器人的控制方式4.力(力矩)控制方式力(力矩)控制方式在进行抓放操作、去毛刺、研磨和组装等作业时,除了要求准确定位之外,还要求使用特定的力或力矩传感器对末端执行器施加在对象上的力进行控制。
这种控制方式的原理与位置伺服控制原理基本相同,但输入量和输出量不是位置信号,而是力(力矩)信号,因此系统中必须有力(力矩)传感器。
三、机器人的控制方式5.智能控制方式智能控制方式在不确定或未知条件下作业,机器人需要通过传感器获得周围环境的信息,根据自己内部的知识库做出决策,进而对各执行机构进行控制,自主完成给定任务。
若采用智能控制技术,机器人会具有较强的环境适应性及自学习能力。
智能控制方法与人工神经网络、模糊算法、遗传算法、专家系统等人工智能的发展密切相关。
三、机器人的控制方式学习单元二机器人控制系统的分机器人控制系统的分类与组成类与组成一、机器人控制系统的分类图图5-15-1机器人控制系统的分类机器人控制系统的分类图图5-25-2机器人控制系统组成框图机器人控制系统组成框图二、机器人控制系统的组成
(1)控制计算机。
控制计算机是控制系统的调度指挥机构,一般为微型机,微处理器分为32位、64位等,如奔腾系列CPU等。
(2)示教编程器。
示教机器人的工作轨迹、参数设定和所有人机交互操作拥有自己独立的CPU及存储单元,与主计算机之间以串行通信方式实现信息交互。
(3)操作面板。
操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。
(4)磁盘存储。
机器人主要用存储机器人工作程序的外围存储器来存储程序。
二、机器人控制系统的组成(10)通信接口。
通信接口用于实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。
(11)网络接口。
网络接口包括Ethernet接口和Fieldbus接口。
Ethernet接口。
Ethernet接口可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mb/s,可直接在PC上用Windows库函数进行应用程序编程,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。
Fieldbus接口。
Fieldbus接口支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbuss、profibusDP、MNET等。
二、机器人控制系统的组成(5)数字量和模拟量输入/输出。
数字量和模拟量输入/输出指各种状态和控制命令的输入或输出。
(6)打印机接口。
打印机接口用于记录需要输出的各种信息。
(7)传感器接口。
传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。
(8)轴控制器。
轴控制器用于完成机器人各关节位置、速度和加速度控制。
(9)辅助设备控制。
辅助设备控制用于和机器人配合的辅助设备控制,如手爪变位器等。
二、机器人控制系统的组成学习单元三机器人控制系统的结构机器人控制系统的结构与位置控制与位置控制2.集中控制方式集中控制方式集中控制方式用一台计算机实现全部控制功能,结构简单,成本低;
但实时性差,难以扩展。
在早期的机器人中常采用这种结构,其构成框图如图5-3所示。
一、机器人控制系统的结构图图5-35-3集中控制方式的构成框图集中控制方式的构成框图在基于计算机的集中控制系统中,充分利用了计算机资源开放性的特点,可以实现很好的开放性,多种控制卡、传感器设备等都可以通过标准PCI插槽或标准串口、并口集成到控制系统中。
集中式控制系统的优点为:
硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好。
其缺点为:
系统控制缺乏灵活性,控制危险容易集中,一旦出现故障,其影响面广,后果严重;
由于工业机器人的实时性要求很高,当系统进行大量数据计算时,会降低系统实时性,系统对多任务的响应能力也会与系统的实时性相冲突;
系统连线复杂,会降低系统的可靠性。
一、机器人控制系统的结构2.主从控制方式主从控制方式主从控制方式采用主、从两级处理器实现系统的全部控制功能。
主CPU实现管理、坐标变换、轨迹生成和系统自诊断等,从CPU实现所有关节的动作控制。
其构成框图如图5-4所示。
主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
一、机器人控制系统的结构图图5-45-4主从控制方式的构成框图主从控制方式的构成框图一、机器人控制系统的结构3.分布控制方式分布控制方式分布控制方式按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。
这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图5-5所示。
其主要思想是“分散控制,集中管理”,即系统对其总体目标和任务可以进行综合协调和分配,并通过子系统的协调工作来完成控制任务。
整个系统在功能、逻辑和物理等方面都是分散的,所以DCS系统又称为集散控制系统或分散控制系统。
在这种结构中,子系统由控制器、不同被控对象或设备构成,各个子系统之间通过网络等相互通信。
分布式控制结构提供了一个开放、实时、精确的机器人控制系统。
分布式系统中常采用两级控制方式。
一、机器人控制系统的结构图图5-55-5分散控制方式的控制框图分散控制方式的控制框图一、机器人控制系统的结构两级分布式控制系统通常由上位机、下位机和网络组成。
上位机可以进行不同的轨迹规划和算法控制,下位机用于进行