最新液压板料折弯机机械部分设计.docx

上传人:b****3 文档编号:1503659 上传时间:2022-10-22 格式:DOCX 页数:27 大小:501.42KB
下载 相关 举报
最新液压板料折弯机机械部分设计.docx_第1页
第1页 / 共27页
最新液压板料折弯机机械部分设计.docx_第2页
第2页 / 共27页
最新液压板料折弯机机械部分设计.docx_第3页
第3页 / 共27页
最新液压板料折弯机机械部分设计.docx_第4页
第4页 / 共27页
最新液压板料折弯机机械部分设计.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

最新液压板料折弯机机械部分设计.docx

《最新液压板料折弯机机械部分设计.docx》由会员分享,可在线阅读,更多相关《最新液压板料折弯机机械部分设计.docx(27页珍藏版)》请在冰豆网上搜索。

最新液压板料折弯机机械部分设计.docx

最新液压板料折弯机机械部分设计

1.第一章

1.1液压板料折弯机

2.第二章

2.1概述

2.2V带的设计计算

2.3V带轮的设计

3.第三章

3.1概述

3.2齿轮传动的设计计算

4.第四章

4.1概述

4.2螺旋传动的设计计算

5.第五章链传动的设计

5.1概述

5.2链条的设计与计算

6.绪论

 

第1章概述

1.1液压板料折弯机

1.1.1液压板料折弯机的简介

液压折弯机按同步方式又可分为:

扭轴同步、机液同步,和电液同步。

     液压折弯机按运动方式又可分为:

上动式、下动式。

     包括支架、工作台和夹紧板,工作台置于支架上,工作台由底座和压板构成,底座通过铰链与夹紧板相连,底座由座壳、线圈和盖板组成,线圈置于座壳的凹陷内,凹陷顶部覆有盖板。

     使用时由导线对线圈通电,通电后对压板产生引力,从而实现对压板和底座之间薄板的夹持。

由于采用了电磁力夹持,使得压板可以做成多种工件要求,而且可对有侧壁的工件进行加工。

折弯机可以通过更换折弯机模具,从而满足各种工件的需求!

1.1.2液压板料折弯机的工作原理

折弯机包括支架、工作台和夹紧板,工作台置于支架上,工作台由底座和压板构成,底座通过铰链与夹紧板相连,底座由座壳、线圈和盖板组成,线圈置于座壳的凹陷内,凹陷顶部覆有盖板。

使用时由导线对线圈通电,通电后对压板产生引力,从而实现对压板和底座之间薄板的夹持。

由于采用了电磁力夹持,使得压板可以做成多种工件要求,而且可对有侧壁的工件进行加工,操作上也十分简便。

液压板料折弯机采用液压电器控制,滑块行程可以任意调节,并具有点动等动作规范,采用点动规范可方便的进行调模和调整。

液压板料折弯机性能可靠,是理想的板料成型设备之一,它广泛应用于飞机、汽车、造船、电器、机械、轻工等行业,生产效率高。

a.滑块

滑块为钢板焊接机构,通过滑块导轨与机架相连,油缸紧定在左右立柱上,油缸的活塞杆通过螺钉与滑块相连,保证滑块同步运动。

b.机械挡块调整机构

为了提高工作精度,位于机架两侧的油缸内设有机械挡块左右油缸顶端通过手轮传动涡轮杆,而使螺杆传动,螺母做上下移动,限制了活塞杆下死点的位置,从而达到控制滑块下死点位置精度和重复定位精度,为保证工件的全长范围内的工作精度,两油缸中的机械挡块位置必须相同。

c.同步机构

滑块在行程中同步,采用机械同步机构,机构简单,稳定可靠,具有所需的同步精度,一般不需要维修,能保持较长时间的使用。

d.前托料架、后挡料(后挡料调节装置)

前托料架由手动调节,后当料调节装置由电动机、皮带、齿轮、丝杠螺母、挡料架和编码器完成前后移动,由手动微调。

挡料的高低可由手动调节。

e.模具

 即使您有满架子的模具,勿以为这些模具适合于新买的机器。

必须检查每件模具的磨损,方法是测量凸模前端至台肩的长度和凹模台肩之间的长度。

     对于常规模具,每英尺偏差应在±0.001英寸左右,而且总长度偏差不大于±0.005英寸。

至于精磨模具,每英尺精度应该是±0.0004英寸,总精度不得大于±0.002 英寸。

最好把精磨模具用于CNC 折弯机,常规模具用于手动折弯机。

f.电器系统

图1.1传动方案

第2章带的传动设计

2.1概述

2.1.1带传动的特点

带传动是靠张紧在带轮上的挠性元件——带传动远东和动力的一种形式,带传动是一种结构简单、传动平稳、能缓和冲击、能实现两轴距离较远的传动。

2.1.2带传动的类型及应用

在带传动中,常用的有平带传动、V带传动、多楔传动和同步带传动。

在一般的机械传动中,应用最广的就是V带传动。

V带的横截面是等腰梯形,带轮也作出相应的轮槽。

传动时,V带只和轮槽的两个侧面接触,即以两侧面为工作面,根据槽面摩擦原理,在同样的张紧力下V带传动较平带传动产生更大的摩擦力。

这是V带传动的最主要优点。

再加上V带允许的传动比大,结构较紧凑,以及V带多以标准化并大量生产等优点,因而V带传动的应用比平带传动广泛的多。

2.2V带的设计计算

2.2.1由上所述,选用V带传动

带的失效形式是:

(1)带打滑

(2)带疲劳断裂

(3)带工作面磨损

因此设计V带的依据是:

在保证带不打滑的前提下,具有一定的疲劳强度和寿命,这也是带传动的设计准则。

2.2.2已知数据

电动机的额定功率=1.5KW

电动机的转速=970r/min

从动轴的转速=490r/min

每天工作时间t=10h

2.2.3设计计算

(1)确定功率

查得工作情况系数=1.1

==1.1×1.5KW=1.65KW

(2)选取普通V型带

根据=1.65KW和=970r/min,确定为Z型。

(3)传动比

===1.98

(4)小带轮基准直径

考虑结构紧凑,取=71mm[1]

(5)大带轮基准直径

=i(1-)

通常取弹性滑动率=0.02,故

=1.98

取=140mm

(6)验算带速

=~30

(7)初定中心距

=270mm

(8)计算带的长度

=

选取节线长度的V带。

实际中心距a

(9)小带轮包角

=180°-57.3°=166°>120°

(10)单根V带的额定功率p

根据带型及转速查得功率为0.23K[1]

(11)单根V带的额定功率增量△p

因为传动不不等于1,所以根据带型、转速及传动比查得△p=0.02KW[1]

(12)带的根数

Z=

包角修正系数=0.98带长修正系数=1.03

Z=6.5根取Z=7,因为装置经常不满载工作

(14)单根V带的初张紧立F

F=500

其中m为单位长度质量(kg/m)得m=0.06kg/m

F=51.6N

(15)有效圆周力F

F==458.3N

(16)作用在轴上的力F

F=2FZsin

(17)所用规格Z﹣900×7

2.3V带轮的设计

2.3.1V带轮设计要求

设计时应满足的要求有:

质量小;结构工艺性好;无过大的铸造内应力;质量分布均匀;转速高时要求经过动平衡;轮槽加工面要求精细,以减少带的磨损;各槽的尺寸和角度应保持一定的精度,以使载荷分布均匀。

2.3.2V带轮的材料

带轮的材料Q235-A

2.3.3V带轮的结构尺寸

因为V带轮的基准直径,且,V带轮由7根皮带带动带轮宽很窄,所以带轮采用实心结构。

由Z﹣900×7可知带轮的尺寸结构:

基准宽度(节宽)

=8.5mm

基准线上槽深

取=2.0mm

基准线下槽深

取=7.0mm

槽间宽e

e=0

第一槽对称面端面距离f

f=7.0mm

最小轮缘厚mm

带轮宽B

B=(z-1)e+2f=14mm

外径

=71+2×2.0mm=75mm

140+2×2.0mm=144mm

轮槽角

=34°

=38°

图2.1大带轮图2.2小带轮

第3章齿轮的设计

3.1概述

3.1.1齿轮的传动特点

齿轮传动是机械传动中最重要的传动之一,形式很多,应用广泛,传动的功率可达十万千瓦,圆周速度可达200m/s

齿轮传动的特点有:

(1)效率高,在常用的间歇传动中,以齿轮传动的效率最高。

(2)结构紧凑,在同样的使用条件下,齿轮传动所需的空间尺寸一般较小。

(3)工作可靠,寿命长,工作可靠。

(4)传动比稳定,传动比稳定往往是对传动性能的基本要求。

齿轮传动得以广泛应用也是由于具有这一特点。

(5)齿轮传动的制造及安装精度要求高,价格昂贵,且不宜适用于传动距离较大的场合。

3.1.2齿轮传动的类型及应用

齿轮传动可做成开式,半开式及闭式。

在农业机械,建筑机械以及简单的机械设备中,有一些齿轮传动没有防尘罩或机壳,齿轮完全暴露在外边,这叫做开式齿轮传动。

这种传动不仅外界杂物容易侵入,而且润滑不良,因此工作条件不好,齿轮容易受到磨损,只适用于低速传动。

当齿轮传动装有简单的防护罩,而且还把大齿轮部分浸如润滑油中,则称为半开式齿轮传动。

工作条件虽有所改善,但不能做到完全防止外界杂物进入,润滑条件也不是很理想。

而汽车,机床,航空发动机等所用的齿轮传动,都是装在经过精确加工而且封闭严密的箱体内,这称为闭式齿轮传动。

相比之下它的润滑及防护条件最好,多用于重要场合。

3.1.3齿轮传动的失效形式

齿轮的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,常见的有:

齿轮断裂;齿面磨损;齿面点蚀;齿面胶合;塑性变形。

除了这五种形式外,还可能出现过热和由于多种原因造成的腐蚀与裂纹等等。

3.2齿轮传动的设计计算

3.2.1已知数据

输入功率

=1.5KW

小齿轮的转速

=490r/min齿数比工作寿命(每年工作300天)t=15年

3.2.2选定齿轮类型、精度等级、材料及齿数

(1)选用直齿轮传动

(2)折弯机的后挡料调节装置

(3)材料选择小齿轮的材料为40C,硬度为280HBS,大齿轮材料为45钢硬度为240HBS

(4)选小齿轮的齿数为Z=20,大齿轮的齿数为Z=80

3.2.3按齿面的接触强度设计

由设计计算公式

进行计算。

确定公式内的各计算数值

(1)计算载荷系数=1.3齿宽系数取弹性影响系数[1]

(2)小齿轮传递的矩

(3)按硬齿面设计得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限

(4)计算齿轮的工作应力循环次数

其中,j为齿轮每转一周时,同一齿面啮合的次数;

为齿轮的工作寿命(单位为小时)

(5)取接触疲劳寿命系数[1]

(6)计算接触疲劳许用应力取失效概率为1%,安全系数为S=1

公式

(7)计算小齿轮的分度圆直径,将的最小值代入公式中得

[1]

计算圆周速度v

V=

计算齿宽b

B=

计算齿宽与齿高之比b/h

模数m=

齿高h=2.25m=4.50mm得b/h=40/4.50=8.89

计算载荷系数

根据速度等于1.03m/s,7级精度,取载荷系数K=1.8[1]

(8)按实际的载荷系数校正所得的分度园直径

(9)计算模数m

3.2.4按齿根弯曲强度计算

弯曲强度计算公式为

确定公式内的各个计算数值

(1)小齿轮的弯曲疲劳强度极限[1],大齿轮的弯曲疲劳极限强度[1]

(2)取弯曲疲劳寿命系数,

(3)计算弯曲疲劳许用应力,取弯曲疲劳安全系数S=1.4,

由式(4-11)

(4)查齿形系数[1]

(5)查应力校正系数[1]

(6)计算大小齿轮的并加以比较

大齿轮的数值大,由公式(4-9)得

对比此计算结果,由于齿面的接触疲劳强度计算的模数大于由齿根弯曲疲劳强度计算的模数,由于齿轮的模数的大小取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力仅与齿面直径有关,所以模数取接近于标准值m=2,按接触强度算得的分度园直径,算出小齿轮齿数z=

大齿轮zz=88这样设计出的齿轮的传动,既满足了接触疲劳强度要求又满足了齿根弯曲疲劳强度,并做到了结构紧凑,避免了浪费。

3.2.5几何尺寸计算

(1)计算分度圆直径,

(2)计算中心距a

a=

计算齿宽b

b,b

3.2.6验算

故合适。

3.2.7齿轮的基本参数

模数m=2

压力角

分度圆直径d

d,d

齿顶高

其中则

齿根高

其中,顶隙系数,则

全齿高

齿顶圆直径

齿根圆直径

基圆直径

齿距

基圆齿距

齿厚

齿槽宽

顶隙

标准中心距

节圆直径,因为中心距是标准中心距,即,;

传动比

图3.1小齿轮图3.2大齿

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1