红外线自动门控制系统设计Word格式.docx

上传人:b****3 文档编号:14964674 上传时间:2022-10-26 格式:DOCX 页数:28 大小:610.03KB
下载 相关 举报
红外线自动门控制系统设计Word格式.docx_第1页
第1页 / 共28页
红外线自动门控制系统设计Word格式.docx_第2页
第2页 / 共28页
红外线自动门控制系统设计Word格式.docx_第3页
第3页 / 共28页
红外线自动门控制系统设计Word格式.docx_第4页
第4页 / 共28页
红外线自动门控制系统设计Word格式.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

红外线自动门控制系统设计Word格式.docx

《红外线自动门控制系统设计Word格式.docx》由会员分享,可在线阅读,更多相关《红外线自动门控制系统设计Word格式.docx(28页珍藏版)》请在冰豆网上搜索。

红外线自动门控制系统设计Word格式.docx

门扇开启轻巧方便,当停电时,老人、儿童等均可开闭自如,开闭力量在3.5公斤以下,方便、安全、可靠。

三、稳定性设计

自动门采用步进电机,具有高效、省电、低噪音、高转速、高扭力、连续使用不过热等特性,大大超越传统交流伺服马达。

由于采用步进电机驱动,配合T型齿条同步带,使门体自低速至高速的运行中具有卓越的稳定性。

由于采用高性能的电源输入,不管电压波幅多大均可自动稳压。

此外在负载瞬间短路时还有过压及过流保护措施,有效保障自动门运转的稳定耐久和安全。

自动门在具体场合的使用设计上,还应注意做好以下配置的选用:

1、安全辅助装置

如在高档酒店等地方可以选择安装防夹人红外感应器,防止停留在门附近的人被门所夹住。

2、备用电源

为保证停电时自动门也能工作正常,应配置备用电源。

3、辅助光线传感器

在需要的地方,自动门可以安装辅助光线传感器(红外对射保护装置),当门打开时,人站着不动,用手遮挡辅助光线传感器,门应该保持打开状态。

当手离开后几秒后,门应该重新关闭。

综上所述,自动门在很多领域具有不可比拟的优越性,随着国民经济的快速发展,自动门在我国已经迎来了快速发展的黄金时期。

自动门构造的技术参数

一、主要的技术指标:

技术指标单门双开门

门重量130kg×

1扇100kg×

2扇

导轨长度2000~5000mm

开门速度200~450mm/秒(可调)

闭门速度200~450mm/秒(可调)

慢行速度30~50mm/秒(可调)

开门时间开门静止后1~10秒的范围内(可调)

控制器高速智能电脑处理器控制

马达DC24V40W无刷步进电机

电源电压AC220V50Hz

消耗功率100W

手动开启力3.5公斤以下

安全功能开闭时遇到障碍物能立即开启,晚间转换到报警功能

使用环境-20℃~+50℃

二、主要构造部件

部件特性

智能控制器:

自动检测门的重量、宽度,使门保持在最佳运行状态。

步进电机:

高效率、省电、低噪音、高转速、高扭力、连续使用不发热。

皮带:

高效同步齿型带,防止打滑,保证平稳运行。

吊架:

用于运动门扇的悬挂,安全可靠。

1.5该设计的基本设计思路

1、有人来时(进门或出门)开门。

当人走到离门不远的时候时,安装在门上侧的热释红外线传感器信号检测装置检测到有人时,将启动电动机带动传动链开门。

2、无人时关门延迟,当热释收发装置没有检测到有人在离门1N的范围内,将延迟1秒启动电动机带动传动链关门。

3、关门中途来人,立即开门。

当启动电动机带动传动链关门时,感应探头突然检测到在离门1m的范围内有人,则立即停止电动机关门,启动电动机带动传动链开门。

总体结构图如下图一:

图1—1设计总结构图

第二章方案论证

2.1调速控制方法及选择

伺服电机也称执行电机,它具有一种服从控制信号的要求而动作的只能,在信号来到之前,转子静止不动;

信号来到之后,转子立即转动;

当信号小时,转子能即使自行停转,由于这种“伺服”性能,因此而得名。

按照在自动控制系统中的功用所要求,伺服电机具备可控性好、稳定性高和速应性强等基本性能。

可控制性好是指寻好消失以后,能立即自行停转;

稳定性高是指转速随转矩的增加而均匀下家,速应性强是指反应快,灵敏。

2.1.1直流伺服电机与普通直流电机以及交流伺服电机的比较

直流伺服电机的工作原理和普通直流电机相同。

只要在其励磁绕组中有电流通过且产生了磁通,当电枢绕组中通过电流时,这个电枢电流与磁通互相作用而产生转矩使伺服电机投入工作。

这两个绕组其中的一个断电时,电动机立即停转,它不象交流伺服电动机那样有“自转”现象。

所以我们选择直流伺服电动机来进行自动门的拖动。

2.1.2选用PWM调速系统控制直流伺服电机

与V-M系统相比,PWM调速系统有下列优点:

由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用可能就足以获得脉冲动很小的直流电流,电枢容易连续,系统的低速运行平稳,调速范围较宽,可达1:

10000左右。

又由于电流波形比V-M系统好,在相同的平均电流即相同的输出转矩下,电动机的损耗和发热都较小。

同样由于开关频率高,若与快速响应的电机配合,系统可以获得很宽的频带,因此快速响应性能好,动态抗干扰能力强。

由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率比较高。

2.2单片机的选择

20世纪80年代以来,单片机的发展非常迅速,就通用单片机而言,世界上一些著名的计算机厂家已投入市场的产品就有50多个系列,数百个品种。

尽管单片机的品种很多,但是在我国使用的最多的是INTER公司的MCS-51系列单片机,直到现在MCS-51系列单片机仍不失为主流系列。

在最近的若干年仍是工业检测控制的主角。

MCS-51系列单片机有3个基本类型:

8031、8051、8751。

这里选用的是8751单片机。

8031内部包括一个8位CPU,128个字节RAM,21个特殊功能寄存器,4个8位并行I/O口,1个全双功串行口,2个16位定时器/计数器,但片内无程序存储器,需要外扩EPROM芯片。

8051在8031基础上,片内又集成有4KROM,作为程序存储器,是一个程序不超过4K字节的小系统。

ROM内的程序是公司制作芯片时,代为用户烧制的,出厂的8051都是含有特殊用途的单片机。

所以8051适合用于应用在程序已定的产品中。

8751是在8031的基础上,增加了4K字节的EPROM,它构成了一个程序小于4KB的小系统。

用户可以将程序固化在EPROM中,可以反复修改程序。

本系统需要通过对程序的修改,来达到电机转速可调,可能需要反复的写入程序,所以选用8751单片机的定时器配合P0口输出来产生PWM调制波,来控制直流伺服电动机。

2.3门控传感器的选择

微波感应器:

又称微波雷达,对物体的移动进行反应,因而反应速度快,适用于行走速度正常的人员通过的场所,它的特点是一旦在门附近的人员不想出门而静止不动,雷达便不再反应,自动门就会关闭,有可能出现夹人现象。

热释红外感应器:

对物体的存在进行反应,不管人员是否移动,只要处于感应器的扫描范围内,它都会反应。

红外感应器的反应速度比微波感应器慢。

本系统首先要求的是安全,所以选用热释红外线传感器。

第三章主要器件的介绍

3.1热释红外传感器的原理和使用

热释电红外传感器是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。

热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物。

热释电红外传感器既可用于防盗报警装置,也可以用于自动控制、接近开关、遥测等领域。

热释电效应:

自然界的任何物体,只要其温度高于绝对零度(-273℃),总是不断地向外发出红外辐射,并以光的速度传播能量。

物体向外辐射红外辐射的能量与物体的温度和红外辐射的波长有关。

物体的温度越高,它所发射的红外辐射的峰值波长越小,发出红外辐射的能量也越大。

通常,电介质的内部是没有载流子的,因此它没有导电能力。

但是任何电介质毫无例外地都是由带电粒子组成的,即自由电子和原子核组成的。

在外加电压的作用下,这些带电粒子也要发生移动,带正电荷的粒子趋向负极,带负电荷的粒子趋向正极。

其结果是使电介质的一个表面带正电,另一个表面带负电,我们称这种现象为电极化。

对于上述现象,某些铁电体电介质材料却是个例外,像上述的几种铁电体材料,当被极化后撤去外加电压时,这种极化现象仍然保留下来,这种现象被称为自发极化。

自发极化的强度与温度相关,当温度升高时,极化强度降低。

自发极化的铁电体平时靠捕捉大气中的浮游电荷保持平衡状态。

当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。

晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。

当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度,下图表示了热释电效应形成的原理。

将释放出的电荷通过放大器放大后就成了一种控制信号,利用这一原理制成的红外传感器称为热释电红外传感器。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。

由于系检知从物体放射出出来的红外线,所以不必直接接触就能够感知物体表面的温度,故人体检知以及移动中物体的温度当然均能以非接触之方式测得。

热电型红外线传感器系接受检知对象物所发出的红外线,因此是被动型,由于不是主动型,所以并不需要校对投光器、受光器之光轴等烦琐的作业。

热电效果系温度变化而产生的,这将在稍后说明之,因此只接受因温度变化之能量(Energy),而热电型红外线传感器将电压微分而输出之。

如果红外辐射持续下去,电介质的温度就会升到新的平衡状态,表面电荷也同时达到平衡。

这时它就不再释放电荷,也就不再有信号输出了,如下图图3—1所示。

因此,对于这类热释电红外传感器,只有在红外辐射强度不断变化,它的内部温度随之不断升降的过程中,传感器才有信号输出,而在稳定状态下,输出信号则为零。

因此在应用这类传感器时,应设法使红外辐射不断变化,这样才能使传感器不断有信号输出。

为了满足这一要求,通常在热释电传感器的使用中,总是要在它的前面加装一个菲涅尔透镜。

图3—1热释电效应的形成原理

能产生热释电效应的晶体称之为热释电体或热释电元件,其常用的材料有单晶(LiTaO3等)、压电陶瓷(PZT等)及高分子薄膜(PVFZ等)。

热释红外线传感器内部结构与电路如下图3—2所示。

热释电传感器利用的正是热释电效应,是一种温度敏感传感器。

它由陶瓷氧化物或压电晶体元件组成,元件两个表面做成电极,当传感器监测范围内温度有ΔT的变化时,热释电效应会在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱电压ΔV。

由于它的输出阻抗极高,所以传感器中有一个场效应管进行阻抗变换。

热释电效应所产生的电荷ΔQ会跟空气中的离子所结合而消失,当环境温度稳定不变时,ΔT=0,传感器无输出。

当人体进入检测区时,因人体温度与环境温度有差别,产生ΔT,则有信号输出;

若人体进入检测区后不动,则温度没有变化,传感器也没有输出,所以这种传感器能检测人体或者动物的活动。

热释电红外传感器的结构及内部电路见下图所示。

传感器主要有外壳、滤光片、热释电元件PZT、场效应管FET等组成。

其中,滤光片设置在窗口处,组成红外线通过的窗口。

滤光片为6mm多层膜干涉滤光片,对太阳光和荧光灯光的短波长(约5mm以下)可很好滤除。

热释电元件PZT将波长在8mm~12mm之间的红外信号的微弱变化转变为电信号,为了只对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅耳滤光片,使环境的干扰受到明显的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 中医中药

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1