曲线拟合线性最小二乘法及其MATLAB程序Word文档下载推荐.docx
《曲线拟合线性最小二乘法及其MATLAB程序Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《曲线拟合线性最小二乘法及其MATLAB程序Word文档下载推荐.docx(18页珍藏版)》请在冰豆网上搜索。
y=[-192.9-85.50-36.15-26.52-9.10-8.43-13.126.5068.04];
plot(x,y,'
r*'
),
legend('
实验数据(xi,yi)'
)
xlabel('
x'
),ylabel('
y'
title('
例7.2.1的数据点(xi,yi)的散点图'
运行后屏幕显示数据的散点图(略).
(3)编写下列MATLAB程序计算在处的函数值,即输入程序
symsa1a2a3a4
x=[-2.5-1.7-1.1-0.800.11.52.73.6];
fi=a1.*x.^3+a2.*x.^2+a3.*x+a4
运行后屏幕显示关于a1,a2,a3和a4的线性方程组
fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,
a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4]
编写构造误差平方和的MATLAB程序
fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];
fy=fi-y;
fy2=fy.^2;
J=sum(fy.^2)
运行后屏幕显示误差平方和如下
J=
(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2
为求使达到最小,只需利用极值的必要条件,得到关于的线性方程组,这可以由下面的MATLAB程序完成,即输入程序
J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;
Ja1=diff(J,a1);
Ja2=diff(J,a2);
Ja3=diff(J,a3);
Ja4=diff(J,a4);
Ja11=simple(Ja1),Ja21=simple(Ja2),Ja31=simple(Ja3),Ja41=simple(Ja4),
运行后屏幕显示J分别对a1,a2,a3,a4的偏导数如下
Ja11=
56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625
Ja21=
32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625
Ja31=
1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125
Ja41=
23667/250*a1+67*a2+18/5*a3+18*a4+14859/25
解线性方程组Ja11=0,Ja21=0,Ja31=0,Ja41=0,输入下列程序
A=[56918107/10000,32097579/25000,1377283/2500,23667/250;
32097579/25000,1377283/2500,23667/250,67;
1377283/2500,23667/250,67,18/5;
23667/250,67,18/5,18];
B=[8442429/625,-767319/625,232638/125,-14859/25];
C=B/A,f=poly2sym(C)
运行后屏幕显示拟合函数f及其系数C如下
C=5.0911-14.19056.4102-8.2574
f=716503695845759/140737488355328*x^3
-7988544102557579/562949953421312*x^2
+1804307491277693/281474976710656*x
-4648521160813215/562949953421312
故所求的拟合曲线为
.
(4)编写下面的MATLAB程序估计其误差,并作出拟合曲线和数据的图形.输入程序
xi=[-2.5-1.7-1.1-0.800.11.52.73.6];
n=length(xi);
f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi-8.2574;
x=-2.5:
0.01:
3.6;
F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x-8.2574;
fy=abs(f-y);
Ew=max(fy),
E1=sum(fy)/n,E2=sqrt((sum(fy2))/n)
plot(xi,y,'
),holdon,plot(x,F,'
b-'
),holdoff
数据点(xi,yi)'
'
拟合曲线y=f(x)'
),
例7.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形'
运行后屏幕显示数据与拟合函数f的最大误差Ew,平均误差E1和均方根误差E2及其数据点和拟合曲线y=f(x)的图形(略).
Ew=E1=E2=
3.10540.90341.2409
7.3函数的选取及其MATLAB程序
例7.3.1给出一组实验数据点的横坐标向量为x=(-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6),纵横坐标向量为y=(459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87,11.87,6.69,14.87,24.22),试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线.
x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6];
y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87,11.87,6.69,14.87,24.22];
),legend('
例7.3.1的数据点(xi,yi)的散点图'
运行后屏幕显示数据的散点图(略).
symsab
x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6];
fi=a.*exp(-b.*x)
运行后屏幕显示关于a和b的线性方程组
fi=
[a*exp(17/2*b),a*exp(87/10*b),a*exp(71/10*b),a*exp(34/5*b),a*exp(51/10*b),a*exp(9/2*b),a*exp(18/5*b),a*exp(17/5*b),a*exp(13/5*b),a*exp(5/2*b),a*exp(21/10*b),a*exp(3/2*b),a*exp(27/10*b),a*exp(18/5*b)]
编写构造误差平方和的MATLAB程序如下
y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87,11.87,6.69,14.87,24.22];
fi=[a*exp(17/2*b),a*exp(87/10*b),a*exp(71/10*b),a*exp(34/5*b),a*exp(51/10*b),a*exp(9/2*b),a*exp(18/5*b),a*exp(17/5*b),a*exp(13/5*b),a*exp(5/2*b),a*exp(21/