七年级数学下册笔记经典打印版Word文档格式.docx
《七年级数学下册笔记经典打印版Word文档格式.docx》由会员分享,可在线阅读,更多相关《七年级数学下册笔记经典打印版Word文档格式.docx(13页珍藏版)》请在冰豆网上搜索。

5、两条直线相交所成的角中,如果有一个是直角或90°
时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。
如图2所示,当∠1或∠2或∠3或∠4=90°
时,a⊥b。
垂线的性质:
性质1:
过一点有且只有一条直线与已知直线垂直。
性质2:
连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:
如图2所示,当a⊥b时,∠1=∠2=∠3=∠4=90°
点到直线的距离:
直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:
①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
的两个角叫同位角。
图3中,共有4对同位角:
∠1与∠5是同位角;
∠2与∠6是同位角;
∠3与∠7是同位角;
∠4与∠8是同位角。
②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。
图3中,共有2对内错角:
∠1与∠7是内错角;
∠4与∠6是内错角。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。
图3中,共有2对同旁内角:
∠1与∠6是同旁内角;
∠4与∠7是同旁内角。
7、平行公理:
经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:
两直线平行,同位角相等。
如图4所示,如果a∥b,
则。
两直线平行,内错角相等。
如图4所示,如果a∥b,则∠1=∠7;
∠4=∠6。
两直线平行,同旁内角互补。
如图4所示,如果a∥b,则∠1+∠6=180°
∠4+∠7=180°
性质4:
平行于同一条直线的两条直线互相平行。
如果a∥b,a∥c,则b∥c。
8、平行线的判定:
判定1:
同位角相等,两直线平行。
如图5所示,如果∠1=∠5或∠2=∠6或∠3=∠7或
∠4=∠8,则a∥b。
判定2:
内错角相等,两直线平行。
如图5所示,如果∠1=∠7或∠4=∠6,则a∥b。
判定3:
同旁内角互补,两直线平行。
如图5所示,如果∠1+∠6=180°
或∠4+∠7=180°
,则a∥b。
判定4:
9、判断一件事情的语句叫命题。
命题由题设和结论两部分组成,有真命题和假命题之分。
如果题设成立,那么结论一定成立,这样的命题叫真命题;
如果题设成立,那么结论不一定成立,这样的命题叫假命题。
真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
10、平移:
在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移后,新图形与原图形的形状和大小完全相同,改变的是图形的位置。
平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移性质:
平移前后两个图形中①对应点的连线段平行且相等;
②对应线段相等;
③对应角相等。
第六章 实数
【知识点一】实数的分类
1、按定义分类:
正有理数
有理数零有限小数和无限循环小数
实数负有理数
正无理数
无理数无限不循环小数
负无理数
2、按性质符号分类:
正有理数
正实数
实数0正无理数
负有理数
负实数负无理数
注:
0既不是正数也不是负数.
【知识点二】实数的相关概念
一、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;
若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4.实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;
反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算术平方根和立方根
1、平方根
(1)平方根的定义:
如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:
如果,那么x叫做a的平方根.
(2)开平方的定义:
求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:
3的平方等于9,9的平方根是3
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
(5)符号:
正数a的正的平方根可用表示,也是a的算术平方根;
正数a的负的平方根可用-表示.
(6)<
—>
a是x的平方x的平方是a
x是a的平方根a的平方根是x
2、算术平方根
(1)算术平方根的定义:
一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.
规定:
0的算术平方根是0.
也就是,在等式(x≥0)中,规定。
(2)的结果有两种情况:
当a是完全平方数时,是一个有限数;
当a不是一个完全平方数时,是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;
当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小
(5)(x≥0)<
x是a的算术平方根a的算术平方根是x
(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
(0)
;
注意的双重非负性:
-(<
0)0
(7)平方根和算术平方根两者既有区别又有联系:
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
3、立方根
(1)立方根的定义:
如果一个数x的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根
(2)一个数的立方根,记作,读作:
“三次根号”,
其中叫被开方数,3叫根指数,不能省略,若省略表示平方。
(3)一个正数有一个正的立方根;
0有一个立方根,是它本身;
一个负数有一个负的立方根;
任何数都有唯一的立方根。
(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
(5)<
a是x的立方x的立方是a
x是a的立方根a的立方根是x
(6),这说明三次根号内的负号可以移到根号外面。
四、科学记数法和近似数
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。
五、实数大小的比较
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法
(1)数轴比较:
在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:
设a、b是实数,
(3)求商比较法:
设a、b是两正实数,
(4)绝对值比较法:
设a、b是两负实数,则。
(5)平方法:
六、实数的运算
1、加法交换律
2、加法结合律
3、乘法交换律
4、乘法结合律
5、乘法对加法的分配律
6、实数混合运算时,对于运算顺序有什么规定?
实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。
同级运算时,从左到右依次进行;
不是同级的混合运算,先算乘方,再算乘除,而后才算加减;
运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?
两有理数除法运算法则可用两种方式来表述:
第一,除以一个不等于零的数,等于乘以这个数的倒数;
第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?
幂?
底数?
指数?
相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作:
an
9、有理数乘方运算的法则是什么?
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?
去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;
括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
第七章 平面直角坐标系
1、有序数对:
有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
2、平面直角坐标系:
在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
假设在平面直角坐标系上有一点P(a,b)
1.如果P点在第一象限,有a>
0,b>
0(横、纵坐标都大于0)
2.如果P点在第二象限,有a<
0(横坐标小于0,纵坐标大于0)
3.如果P点在第三象限,有a<
0,b<
0(横、纵坐标都小于0)
4.如果P点在第四象限,有a>
0(横坐标大于0,纵坐标小0)
5.如果P点在x轴上,有b=0(横轴上点的纵坐标为0)
6.如果P点在y轴上,有a=0(纵轴上点的横坐标为0)
7.如果点P位于原点,有a=b=0(原点上点的横、纵坐标都为0)
3、横轴、纵轴、原点:
水平的数轴称为x轴或横轴;
竖直的数轴称为y轴或纵轴;
两坐标轴的交点为平面直角坐标系的原点。
4、坐标:
对