高考理科数学浙江卷试题及答案Word格式.doc

上传人:b****3 文档编号:14787066 上传时间:2022-10-24 格式:DOC 页数:10 大小:621.50KB
下载 相关 举报
高考理科数学浙江卷试题及答案Word格式.doc_第1页
第1页 / 共10页
高考理科数学浙江卷试题及答案Word格式.doc_第2页
第2页 / 共10页
高考理科数学浙江卷试题及答案Word格式.doc_第3页
第3页 / 共10页
高考理科数学浙江卷试题及答案Word格式.doc_第4页
第4页 / 共10页
高考理科数学浙江卷试题及答案Word格式.doc_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

高考理科数学浙江卷试题及答案Word格式.doc

《高考理科数学浙江卷试题及答案Word格式.doc》由会员分享,可在线阅读,更多相关《高考理科数学浙江卷试题及答案Word格式.doc(10页珍藏版)》请在冰豆网上搜索。

高考理科数学浙江卷试题及答案Word格式.doc

6.设、为两个不同的平面,l、m为两条不同的直线,且l,m,有如下的两个命题:

①若∥,则l∥m;

②若l⊥m,则⊥.那么

(A)①是真命题,②是假命题(B)①是假命题,②是真命题

(C)①②都是真命题(D)①②都是假命题

7.设集合,则A所表示的平面区域(不含边界的阴影部分)是()

(A)(B)(C)(D)

8.已知k<-4,则函数y=cos2x+k(cosx-1)的最小值是()

(A)1(B)-1(C)2k+1(D)-2k+1

9.设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记={n∈N|f(n)∈P},={n∈N|f(n)∈Q},则(∩)∪(∩)=()

(A){0,3}(B){1,2}(C)(3,4,5}(D){1,2,6,7}

10.已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,则

(A)⊥(B)⊥(-)(C)⊥(-)(D)(+)⊥(-)

第Ⅱ卷(非选择题共100分)

二、填空题:

本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置 

11.函数y=(x∈R,且x≠-2)的反函数是_________.

12.设M、N是直角梯形ABCD两腰的中点,DE⊥AB于E(如图).现将△ADE沿DE折起,使二面角A-DE-B为45°

,此时点A在平面BCDE内的射影恰为点B,则M、N的连线与AE所成角的大小等于_________.

13.过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.

14.从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).

三、解答题:

本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤

15.已知函数f(x)=-sin2x+sinxcosx.

(Ⅰ)求f()的值;

(Ⅱ)设∈(0,),f()=-,求sin的值.

16.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2=2x.

(Ⅰ)求函数g(x)的解析式;

(Ⅱ)解不等式g(x)≥f(x)-|x-1|.

17.如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,|MA1|∶|A1F1|=2∶1.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线:

x=m(|m|>1),P为上的动点,使最大的点P记为Q,求点Q的坐标(用m表示).

18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.

(Ⅰ)当k=时,求直线PA与平面PBC所成角的大小;

(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

19.袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.

(Ⅰ)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;

(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E.

(Ⅱ)若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.

20.设点(,0),和抛物线:

y=x2+anx+bn(n∈N*),其中an=-2-4n-,由以下方法得到:

x1=1,点P2(x2,2)在抛物线C1:

y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点在抛物线:

y=x2+anx+bn上,点(,0)到的距离是到上点的最短距离.

(Ⅰ)求x2及C1的方程.

(Ⅱ)证明{}是等差数列.

参考答案

一、选择题:

本题考查基本知识和基本运算每小题5分,满分50分

(1)C

(2)D(3)B(4)B(5)D(6)D(7)A(8)A(9)A(10)C

本题考查基本知识和基本运算每小题4分,满分16分

(11);

(12);

(13)2;

(14)8424

(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分

解:

(1),

(2)

解得

(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分

(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则

∵点在函数的图象上

(Ⅱ)由

当时,,此时不等式无解

当时,,解得

因此,原不等式的解集为

(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分

(Ⅰ)设椭圆方程为,半焦距为,则

(Ⅱ)设,

当时,;

当时,,

只需求的最大值即可

设直线的斜率,直线的斜率,

当且仅当时,最大,

(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分

方法一:

(Ⅰ)∵O、D分别为AC、PC中点,

(Ⅱ)

又,

PA与平面PBC所成的角的大小等于,

(Ⅲ)由(Ⅱ)知,,∴F是O在平面PBC内的射影

∵D是PC的中点,

若点F是的重心,则B,F,D三点共线,

∴直线OB在平面PBC内的射影为直线BD,

,即

反之,当时,三棱锥为正三棱锥,

∴O在平面PBC内的射影为的重心

方法二:

,,

以O为原点,射线OP为非负z轴,建立空间直角坐标系(如图)

设则,

设,则

(Ⅰ)D为PC的中点,

(Ⅱ),即,

可求得平面PBC的法向量,

设PA与平面PBC所成的角为,则

(Ⅲ)的重心,

,即,

(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力满分14分

(Ⅰ)(i)

(ii)随机变量的取值为0,1,2,3,;

由n次独立重复试验概率公式,得

(或)

随机变量的分布列是

1

2

3

P

的数学期望是

(Ⅱ)设袋子A中有m个球,则袋子B中有2m个球

由,得

(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分

(Ⅰ)由题意得,

设点是上任意一点,

由题意得,

又在上,

故的方程为

(Ⅱ)设点是上任意一点,

由题意得

下面用数学归纳法证明,

①当时,,等式成立;

②假设当时,等式成立,即,

则当时,由知,

又,,

即时,等式成立

由①②知,等式对成立,

故是等差数列

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动物植物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1