超详细高考必背重点及易错高中数学必修+选修知识点归纳Word文档格式.doc
《超详细高考必背重点及易错高中数学必修+选修知识点归纳Word文档格式.doc》由会员分享,可在线阅读,更多相关《超详细高考必背重点及易错高中数学必修+选修知识点归纳Word文档格式.doc(35页珍藏版)》请在冰豆网上搜索。
系列2:
由3个模块组成。
选修2—1:
常用逻辑用语、圆锥曲线与方程、
空间向量与立体几何。
选修2—2:
导数及其应用,推理与证明、数系的扩充与复数
选修2—3:
计数原理、随机变量及其分布列,统计案例。
2.重难点及考点:
重点:
函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:
函数、圆锥曲线
高考相关考点:
⑴集合与简易逻辑:
集合的概念与运算、简易逻辑、充要条件
⑵函数:
映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:
数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:
有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面向量:
有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:
概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:
直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:
椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑼直线、平面、简单几何体:
空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:
排列、组合应用题、二项式定理及其应用
⑾概率与统计:
概率、分布列、期望、方差、抽样、正态分布
⑿导数:
导数的概念、求导、导数的应用
⒀复数:
复数的概念与运算
必修1数学知识点
第一章:
集合与函数概念
§
1.1.1、集合
1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:
确定性、互异性、无序性。
2、只要构成两个集合的元素是一样的,就称这两个集合相等。
3、常见集合:
正整数集合:
或,整数集合:
,有理数集合:
,实数集合:
.
4、集合的表示方法:
列举法、描述法.
1.1.2、集合间的基本关系
1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。
记作.
2、如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:
AB.
3、把不含任何元素的集合叫做空集.记作:
.并规定:
空集合是任何集合的子集.
4、如果集合A中含有n个元素,则集合A有个子集,个真子集.
1.1.3、集合间的基本运算
1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:
2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:
3、全集、补集?
1.2.1、函数的概念
1、设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:
2、一个函数的构成要素为:
定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.
1.2.2、函数的表示法
1、函数的三种表示方法:
解析法、图象法、列表法.
1.3.1、单调性与最大(小)值
1、注意函数单调性的证明方法:
(1)定义法:
设那么
上是增函数;
上是减函数.
步骤:
取值—作差—变形—定号—判断
格式:
解:
设且,则:
=…
(2)导数法:
设函数在某个区间内可导,若,则为增函数;
若,则为减函数.
1.3.2、奇偶性
1、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.
2、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.
知识链接:
函数与导数
1、函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.
2、几种常见函数的导数
①;
②;
③;
④;
⑤;
⑥;
⑦;
⑧
3、导数的运算法则
(1).
(2).
(3).
4、复合函数求导法则
复合函数的导数和函数的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.
解题步骤:
分层—层层求导—作积还原.
5、函数的极值
(1)极值定义:
极值是在附近所有的点,都有<,则是函数的极大值;
极值是在附近所有的点,都有>,则是函数的极小值.
(2)判别方法:
图
象
性
质
(1)定义域:
R
(2)值域:
(0,+∞)
(3)过定点(0,1),即x=0时,y=1
(4)在R上是增函数
(4)在R上是减函数
(5);
①如果在附近的左侧>0,右侧<0,那么是极大值;
②如果在附近的左侧<0,右侧>0,那么是极小值.
6、求函数的最值
(1)求在内的极值(极大或者极小值)
(2)将的各极值点与比较,其中最大的一个为最大值,最小的一个为极小值。
注:
极值是在局部对函数值进行比较(局部性质);
最值是在整体区间上对函数值进行比较(整体性质)。
第二章:
基本初等函数(Ⅰ)
2.1.1、指数与指数幂的运算
1、一般地,如果,那么叫做的次方根。
其中.
2、当为奇数时,;
当为偶数时,.
3、我们规定:
⑴
;
⑵;
4、运算性质:
⑴;
⑵;
⑶.
2.1.2、指数函数及其性质
1、记住图象:
2、性质:
2.2.1、对数与对数运算
1、指数与对数互化式:
2、对数恒等式:
3、基本性质:
,.
4、运算性质:
当时:
⑴;
5、换底公式:
6、重要公式:
7、倒数关系:
2..2.2、对数函数及其性质
(3)过定点(1,0),即x=1时,y=0
(4)在(0,+∞)上是增函数
(4)在(0,+∞)上是减函数
(5);
2.3、幂函数
1、几种幂函数的图象:
第三章:
函数的应用
3.1.1、方程的根与函数的零点
1、方程有实根
函数的图象与轴有交点
函数有零点.
2、零点存在性定理:
如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根.
3.1.2、用二分法求方程的近似解
1、掌握二分法.
3.2.1、几类不同增长的函数模型
3.2.2、函数模型的应用举例
1、解决问题的常规方法:
先画散点图,再用适当的函数拟合,最后检验.
必修2数学知识点
空间几何体
1、空间几何体的结构
⑴常见的多面体有:
棱柱、棱锥、棱台;
常见的旋转体有:
圆柱、圆锥、圆台、球。
⑵棱柱:
有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:
用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、空间几何体的三视图和直观图
把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;
把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
3、空间几何体的表面积与体积
⑴圆柱侧面积;
⑵圆锥侧面积:
⑶圆台侧面积:
⑷体积公式:
⑸球的表面积和体积:
点、直线、平面之间的位置关系
1、公理1:
如果一条直线上两点在一个平面内,那么这条直线在此平面内。
2、公理2:
过不在一条直线上的三点,有且只有一个平面。
3、公理3:
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、公理4:
平行于同一条直线的两条直线平行.
5、定理:
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
6、线线位置关系:
平行、相交、异面。
7、线面位置关系:
直线在平面内、直线和平面平行、直线和平面相交。
8、面面位置关系:
平行、相交。
9、线面平行:
⑴判定:
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行)。
⑵性质:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简称线面平行,则线线平行)。
10、面面平行:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面平行,则面面平行)。
如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。
11、线面垂直:
⑴定义:
如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。
⑵判定:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称线线垂直,则线面垂直)。
⑶性质:
垂直于同一个平面的两条直线平行。
12、面面垂直:
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,则面面垂直)。
两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
(简称面面垂直,则线面垂直)。
直线与方程
1、倾斜角与斜率:
2、直线方程:
⑴点斜式:
⑵斜截式:
⑶两点式:
⑷截距式:
⑸一般式:
3、对于直线:
有:
⑵和相交;
⑶和重合;
⑷.
4、对于直线:
5、两点间距离公式:
6、点到直线距离公式:
7、两平行线间的距离公式:
:
与:
平行,则
第四章:
圆与方程
1、圆的方程:
⑴标准方程:
其中圆心为,半径为.
⑵一般方程:
2、直线与圆的位置关系
直线与圆的位置关系有三种:
;
.
弦长公式:
3、两圆位置关系:
⑴外离:
⑵外切:
⑶相交:
⑷内切:
⑸内含:
3、空间中两点间距离公式:
必修3数学知识点
算法
1、算法三种语言:
自然语言、流程图、程序语言;
2、流程图中的图框:
起止框、输入输出