智能材料的应用和发展Word文档格式.docx

上传人:b****1 文档编号:14753845 上传时间:2022-10-24 格式:DOCX 页数:21 大小:336.71KB
下载 相关 举报
智能材料的应用和发展Word文档格式.docx_第1页
第1页 / 共21页
智能材料的应用和发展Word文档格式.docx_第2页
第2页 / 共21页
智能材料的应用和发展Word文档格式.docx_第3页
第3页 / 共21页
智能材料的应用和发展Word文档格式.docx_第4页
第4页 / 共21页
智能材料的应用和发展Word文档格式.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

智能材料的应用和发展Word文档格式.docx

《智能材料的应用和发展Word文档格式.docx》由会员分享,可在线阅读,更多相关《智能材料的应用和发展Word文档格式.docx(21页珍藏版)》请在冰豆网上搜索。

智能材料的应用和发展Word文档格式.docx

TheItelligentMterial,、Thebionic,、IntelligentFiber.

 

一、智能材料

在这个新材料层出不穷的时代,智能材料也是独领风骚的一朵奇葩,是二十世纪九十年代迅速发展起来的一类新型复合材料。

智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligentmaterial,Intelligentmaterialandstructure,Smartmaterial,Smartmaterialandstructure,Adaptivematerialandstructure等。

它的构想来源于仿生(仿生就是模仿大自然中生物的一些独特功能制造人类使用的工具,如模仿蜻蜓制造飞机等等),它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料.因此智能材料必须具备感知,驱动和控制这三个基本要素。

具体来说需具备以下内涵:

(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等;

(2)具有驱动功能,能够响应外界变化;

(3)能够按照设定的方式选择和控制响应;

(4)反应比较灵敏,及时和恰当;

(5)当外部刺激消除后,能够迅速恢复到原始状态。

举一个简单的应用了智能材料的例子:

某些太阳镜的镜片当中含有智能材料,这种智能材料能感知周围的光,并能够对光的强弱进行判断,当光强时,它就变暗,当光弱时,它就会变的透明。

[1]

但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。

这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。

下面我们将从智能材料的特征、构成和分类来简单的介绍一下。

1、智能材料的特征

设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:

(1)传感功能(Sensor)

能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。

(2)反馈功能(Feedback)

可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。

(3)信息识别与积累功能

能够识别传感网络得到的各类信息并将其积累起来。

(4)响应功能

能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。

(5)自诊断能力(Self-diagnosis)

能通过分析比较系统目前的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。

(6)自修复能力(Self-recovery)

能通过自繁殖、自生长、原位复合等再生机制,来修补某些局部损伤或破坏。

(7)自调节能力(Self-adjusting)

对不断变化的外部环境和条件,能及时地自动调整自身结构和功能,并相应地改变自己的状态和行为,从而使材料系统始终以一种优化方式对外界变化作出恰如其分的响应。

2、智能材料的构成

一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。

[1]

(1)基体材料

基体材料担负着承载的作用,一般宜选用轻质材料。

一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。

其次也可选用金属材料,以轻质有色合金为主。

(2)敏感材料

 敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。

常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。

(3)驱动材料

因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。

常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。

可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。

(4)其它功能材料

包括导电材料、磁性材料、光纤等。

a、导电材料包含导电塑料和导电橡胶。

导电橡胶是将玻璃镀银、铝镀银、银等导电颗粒均匀分布在硅橡胶中,通过压力使导电颗粒接触,达到良好的导电性能。

导电橡胶具有良好的电磁密封和水汽密封能力,在一定压力下能够提供良好的导电性(抑制频率达到40GHz)。

b、磁性材料主要是指由过渡元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质。

磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。

从应用功能上讲,磁性材料分为:

软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。

磁性材料从形态上讲。

包括粉体材料、液体材料、块体材料、薄膜材料等。

c、光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤的一端的发射装置使用发光二极管(lightemittingdiode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

3、智能材料的分类

智能材料是继天然材料、人造材料、精细材料之后的第四代功能材料。

因为现在可用于智能材料的材料种类不断扩大,所以智能材料的分类也只能是粗浅的,分类方法也有多种,一般若按功能来分可以分为光导纤维、形状记忆合金、压电、电流变体和电(磁)致伸缩材料等。

若按来源来分,智能材料可以分为金属系智能材料、无机非金属系智能材料和高分子系智能材料。

目前研究开发的金属系智能材料主要有形状记忆合金和形状记忆复合材料两大类;

无机非金属系智能材料在电流变体、压电陶瓷、光致变色和电致变色材料等方面发展较快。

下面我们主要介绍智能材料八种主要种类:

1)、形状记忆合金;

2)、电流变体和磁流变体;

3)、磁致伸缩材料;

4)、压电陶瓷;

5)、电致伸缩陶瓷;

6)、光致变色玻璃;

7)、电致变色材料;

8)、光导纤维。

1)、形状记忆合金(SMA)

一般金属材料受到外力作用后,首先发生弹性变形,达到屈服点,就产生塑性变形,应力消除后留下永久变形。

但有些材料,在发生了塑性变形后,经过合适的热过程,能够回复到变形前的形状,这种现象叫做形状记忆效应(SME)。

具有形状记忆效应的金属一般是两种以上金属元素组成的合金,称为形状记忆合金(SMA)[2]。

根据不同的记忆功能,形状记忆合金可分为单程、双程、全程记忆效应和伪弹性等。

(1)单程记忆效应(OneWayShapeMemory,简称OWSM):

形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。

(2)双程记忆效应(TwoWayShapeMemory,简称TWSM):

某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。

(3)全程记忆效应(All-roundShapeMemory,简称ARSM):

加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。

三种记忆效应图

目前,已开发成功的形状记忆合金有TiNi基形状记忆合金、铜基形状记忆合金、铁基形状记忆合金等。

最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。

他们观察到Au-Cd合金中相变的可逆性。

后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。

直到1962年,Buehler及其合作者在等原子比的TiNi合金中,观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。

到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。

几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。

 

形状记忆合金的具体应用:

工业应用:

(1)利用单程形状记忆效应的单向形状恢复。

如管接头、天线、套环等。

(2)外因性双向记忆恢复。

即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。

(3)内因性双向记忆恢复。

即利用双程记忆效应随温度升降做反复动作,如热机、热敏元件等。

但这类应用记忆衰减快、可靠性差,不常用。

(4)超弹性的应用。

如弹簧、接线柱、眼镜架等。

医学应用:

TiNi合金的生物相容性很好,利用其形状记忆效应和超弹性的医学实例相当多。

如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、心脏修补元件、人造肾脏用微型泵等。

脊柱修复支架人造血管

2)、电流变体和磁流变体(ElectrorheologicalfluidandMagnetorheologicalfluids)

电致、磁致变体智能材料大多是由合成材料或陶瓷材料制成的,具有在电场或磁场的作用下发生变性的能力,其变化的大小与电场和磁场的强度有关。

科学家研制成功一种电致变性材料,这种材料在接通电流时,可以从液体变为接近固体。

如果向空心复合梁中充入电流变性液体材料,在外电场的作用下,这种液体材料就会变硬,从而使梁变成僵硬

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1