小学数学疑难问题选MicrosoftWord文档文档格式.docx
《小学数学疑难问题选MicrosoftWord文档文档格式.docx》由会员分享,可在线阅读,更多相关《小学数学疑难问题选MicrosoftWord文档文档格式.docx(10页珍藏版)》请在冰豆网上搜索。
自然数包括零。
随后,在进行中小学数学教材的修订时,根据上述国家标准进行了修改。
数物体时如果一个物体也没有,就用0表示。
0也是自然数。
2、最小的一位数是(A)
A、1B、0C、没有
为什么0不是一位数?
为什么最小的一位数是1,而不是0?
实际上,一位数、两位数等自然数都可以用更多的数字来表示。
如两位数48可以表示为048;
一位数6可以表示为006。
为了分化出一位数、两位数等概念,我们约定:
在一个自然数中,从计数单位最大的、不是零的数字起到个位止的数字是这个自然数的有效数字。
有效数字有几个,这个自然数就称之为几位数。
数0也可以用000来表示。
事实上,不论用多少个0来表示都行,但其中没有0以外的数字。
所以表示0的数码中没有一个有效数字。
因此,0不是一位数。
当然也不是两位数、三位数……。
由于0不是一位数,一位数只有1,2,3,…,9共九个,所以,最大的一位数是9;
最小的一位数是1,而不是0。
3、自然数、正整数和整数这三个数概念中,(C)的范围最大。
A、自然数B、正整数C、整数
自然数、正整数和整数之间的区别和联系是什么?
【正整数】一个、一个地数东西而产生的、用来表示物体个数的数1,2,3,……也叫正整数。
当我们数每一棵苹果树上有多少个苹果时,可能遇到一个苹果也没有的情形。
要数的东西一个也没有,就用“0”表示。
0与正整数统称自然数。
【负整数】为了表示现实世界中具有相反意义的量,人们引用了正数与负数。
如“盈利5元”用“+5元”表示,“亏损5元”就用“-5元”表示。
这种在一个数前添加的表示它的“正”、“负”的符号叫做“性质符号”。
添加了性质符号“+”或“-”的数分别称为“正数”与“负数”。
“0”既不是正数,也不是负数。
正数中的正号可以省略不写。
添加了负号“-”的正整数叫做负整数。
【整数】正整数、零与负整数统称“整数”。
【自然数】“数”(shù
)起源于数(shǔ),一个、一个地数东西。
由此而产生的用来表示物体个数的数一,二,三,……就叫自然数。
零表示没有东西可数,零也是一个自然数。
“一”是自然数的单位。
任何一个自然数都是由若干个“1”组成的。
4、小于准确数的近似数叫做(B)
A、过剩近似数B、不足近似数
不足近似数和过剩近似数
小于准确数的近似值,叫不足近似值;
大于准确数的近似值,叫过剩近似值。
例如,3.14、3.142分别是圆周率的不足近似值和过剩近似值。
5、048是(B)位数
A、三B、两C、048不是一个数
6、把724600“四舍五入”到万位,下面两种做法正确的是(A)
A、方法一:
724600——720000
B、方法二:
724600——725000——73000
C、两种方法都对
7、分数可以分为(A)
A、真分数和假分数B、真分数和带分数
C、真分数、假分数和带分数
说“分数可以分为真分数、假分数与带分数”对吗?
分数可以按照不同的标准来分类。
如按照分子与分母有没有1以外的公约数,可以把分数分为可约分数和最简分数。
分子与分母有1以外的公约数的分数叫做可约分数;
分子与分母没有1以外的公约数的分数叫做最简分数(又称既约分数)。
还可以按照分子是否小于分母分为真分数和假分数。
分子小于分母的分数叫真分数;
分子不小于分母(即分子大于或等于分母)的分数叫做假分数。
在分数的后一种分类中,分类的结果应该是两个子项——真分数与假分数。
它们的外延的和(即外延的并集)等同于分数的处延。
因此,不应该再有其它的子项。
因此,说“分数可以分为真分数、假分数与带分数”是不对的。
此外,根据定义,“带分数”是“一个整数和一个真分数合成的数”。
实际上是一个整数与一个真分数的和,而不是一个分数。
8、带分数是一个(C)
A、分数B、假分数C、和式
9、下面哪种说法是正确的(A)
A、百分数就是分母是100的分数
B、百分数与百分比相同,与百分率有区别
C、百分数的分子可以是整数,但不可以是小数
【百分数】【百分比】【百分率】
表示一个数是另一个数(或一个量是另一个同类量)的百分之几的数叫做百分数。
百分数通常用来表示两个数(或两个同类量)的比,所以又叫“百分比”或“百分率”。
百分数实质上是一个分母是100、分子是整数或小数的分数。
百分数与分数的区别在于:
分数既可以表示两个数或两个同类量的倍比关系,也可以用来表示具体的数量。
而百分数只用于表示两个数量的倍比关系。
10、我们在进行(C)运算时,如果有带分数,一般要先把它化成假分数然后再进行计算。
A、分数的加法B、分数的减法C、分数乘法或除法
为什么在分数的乘法、除法运算中,要先把带分数化成假分数?
【分数乘法的法则】
两个分数相乘,以分子的积作为积的分子;
以分母的积作为积的分母。
即
这个法则适用于任何两个分数相乘。
但不能直接用于带分数。
因为“带分数是一个自然数与一个真分数合并而成的数”。
实质上是一个自然数与一个真分数的和。
严格地说,它是一个式(两个数相加的和式),而不是一个数。
当然也就不是一个分数。
因此,分数乘法法则不能直接用于带分数是顺理成章的。
在做分数乘法时,如果有些因数是带分数,先要把这些带分数化为假分数,再按分数乘法法则演算。
做分数除法时,如果有带分数,也要先化为假分数。
【带分数做加、减法,不必化为假分数】
在分数加、减法中用不着先把带分数化为假分数。
这时,带分数的整数部分与分数部分可以作为两个数分别处理。
以上所说的属于常规的操作程序。
对于某些算题的简便计算,往往需要改变法则规定的操作程序,寻求某种简捷的途径。
11、约分的理论依据是(A)
A、分数的基本性质B、分数的计算法则
C、分数的意义
12、根据算式中所给的数据和运算,按照一定的程序操作,以求出运算结果的过程叫做(A)
A、计算B、运算C、演算
“运算”、“计算”、“演算”有什么不同?
小学数学中所说的“运算”通常就是指算术运算或四则运算。
根据算式中所给的数据和运算,按照一定的程序操作,以求出运算结果的过程叫做“计算”。
在小学数学中,人们常常用“演算”表示求一个算式的运算结果的操作过程。
除了各种运算,“演算”还包括约分、通分之类的恒等变换,以及求最大公约数或最小公倍数,辗转相除法等操作。
13、四则混合运算所采取的计算方式是(C)
A、横式B、竖式C、递等式
在数的计算中,“横式”、“竖式”、“递等式”各指什么?
【横式】通过运算符号,把一些数字连结起来,从左往右排列的式子叫做横式。
横式可以笔算,也可以口算,并把算出的得数写在等号的后面。
如53+24=77,29+75-63=41。
【竖式】把需要计算的数,写成符合规定的形式,再按运算法则进行计算。
通常通过笔算进行。
用竖式计算的实质是将当前对于二个数的计算归结为它们各个数位上的数的计算,以求得得数的各个数位上的数。
【递等式】在进行混合运算时,要按运算顺序逐步计算。
并用计算结果代替原式中的部分算式。
用等号与原式相联。
直至求出最后结果,这样的书写形式叫做递等式。
一般情况下竖式用于数目较大,数位较多的四则计算,用于口算比较困难的场合。
递等式用于四则混合运算。
14、36+88+64=36+64+88?
根据(C)来证明
A、加法交换律B、加法结合律
C、加法交换律和加法结合律
36+88+64=36+64+88?
根据什么来证明
常见的误解是:
36+88+64=36+64+88是根据加法交换律来证明的。
似乎在“36+88+64”中,将88与64交换位置,就可以得到“36+64+88”。
这样的理解是错误的。
加法交换律告诉我们:
“两个数相加,交换加数的位置,和不变。
”四则混合运算的顺序规定:
“没有括号并且只含有同一级运算的算式,从左到右依次计算”。
这就是说,(36+88)+64中的括号可以省去。
也就是说,对于36+88+64应该理解为(36+88)+64。
因此,在算式“36+88+64”中,与64相加的并不是88,而是36+88的和。
因为88与64并不是相加的两个数。
所以,不能根据加法交换律交换它们的位置。
上面的等式可以证明如下:
(36+88)+64=36+(88+64)……加法结合律
=36+(64+88)……加法交换律
=(36+64)+88……加法结合律
或者,这样证明:
(36+88)+64=64+(36+88)……加法交换律
=(64+36)+88……加法结合律
=(36+64)+88……加法交换律
15、在现行的小学数学教科书中,“3个2”写成乘法算式可以是(C)
A、3×
2B、2×
3C、3×
2或2×
3
16、进行小数加减法时,要相同数位对齐,就是要(B)
A、小数的末位对齐
B、计数单位相同对齐
C、数位写整齐
17、下面列举的几种说法中,错误的是(A)
A、除法有等分除法与包含除法
B、用除法来解决,把一个数量平均分成几份,求一份是多少的问题,叫做等分除法
C、用除法来解决,求一个数量里包含几个另一个数量的问题,叫做包含除法
D、等分除和包含除都是运用除法来解决问题,是除法的两种不同的模型。
18、0.312中的“.”叫(B)符号
A、结合符号B、分隔符号C、都不是
什么是“结合符号”与“分隔符号”?
【结合符号】用来表示运算顺序(即算式结构)的符号叫做结合符号。
括号就是常用的结合符号。
【分隔符号】起分隔作用的显示不同区域内符号的不同意义的数学符号叫做分隔符号。
如多位数分级的“分节号”;
区分一个小数的整数部分与小数部分的“小数点”;
区分无限循环小数的小数部分中的循环节和不循环部分的循环点;
都是分隔符号。
有些其它符号兼有分隔符号的作用。
如分数线上面(或前面)的数或式是分子;
下面(或后面)的数或式是分母。
而分数线本身不但有除法运算的意义,还有分隔符号与结合符号的作用。
19、“从左到右”和“先乘除、后加减”等四则混合运算顺序是(A)
A、一种人为的关于数学符号语言的规定
B、以客观规律为基础的定理或定律
C、以上两种说法兼而有之
四则混合运算为什么要规定:
“从左到右”、“先乘除、后加减”?
“从左到右”和“先乘除、后加减”都不是以客观规律为基础的定理或定律,而是一种有关数学符号语言的人为的规定,目的在于尽可能减少算式中为说明各个运算的顺序所用的括号。
20、笔算300÷
15时,最先写的是(A)
A、300B、15C、
21、何谓“双数”?
双数就是(C)
A、能被2整除的数B、个位上是0、2、4、6、8的数C、正偶数
单数、双数与奇数、偶数有什么区