初一一元一次方程应用题 中难Word下载.docx
《初一一元一次方程应用题 中难Word下载.docx》由会员分享,可在线阅读,更多相关《初一一元一次方程应用题 中难Word下载.docx(18页珍藏版)》请在冰豆网上搜索。
3.5
3.8
4.9
87.8
鸡蛋
13.2
10.7
1.8
74.3
2.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?
3.A、B两列火车长分别是120m和144m,A车比B车每秒多行5m.
(1)两列相向行驶,从相遇到两车全部错开需8秒,问两车的速度各是多少?
(2)在
(1)的条件下,若同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要多少秒?
4.某商店开张为吸引顾客,所有商品一律按标价的八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%.问这种鞋的标价是多少元?
5.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.
(1)求无风时飞机的飞行速度;
(2)求两城之间的距离.
6.A、B两地相距120km,一辆汽车以每小时50km的速度从A地出发,另一辆货车以每小时40km的速度从B地出发,两车相向而行.经过多少时间两车相距30km?
7.【背景知识】
数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:
数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;
线段AB的中点M表示的数为.
【问题情境】
已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
【综合运用】
(1)运动开始前,A、B两点的距离为 ;
线段AB的中点M所表示的数 .
(2)点A运动t秒后所在位置的点表示的数为 ;
点B运动t秒后所在位置的点表示的数为 ;
(用含t的代数式表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?
(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?
若能,求出运动时间,并直接写出中点M的运动方向和运动速度;
若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合)
8.牧场上的草长得一样地密,一样地快.已知70头牛在24天里把草吃完,而30头牛就可吃60天.如果要吃96天,问牛数该是多少?
9.A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.
(1)若两人同时出发相向而行,则需经过几小时两人相遇?
(2)若两人同时出发相向而行,则需几小时两人相距16千米?
(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?
10.A、B两地相距1200千米,甲车和乙车均从A地开往B地,且知甲车的速度是每小时行90千米,是乙车速度的1.5倍.
(1)乙车的速度是 千米/小时,甲车从A地到B地用 小时,乙车从A地到B地用 小明.
(2)若两车同时出发从A地开往B地,问乙车开出多长时间两车相距100千米?
(3)若两车均从A地开往B地,且乙车先出发5小时,问乙车开出多长时间两车相距100千米?
11.A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.
12.早晨8点多钟,有两辆汽车先后离开甲地向乙地开去,这两辆汽车的速度相同.8点32分,第一辆汽车行驶的路程是第二辆汽车的3倍;
到了8点39分,第一辆汽车行驶的路程是第二辆的2倍.那么,第一辆汽车是几点几分离开甲地的?
13.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?
14.已知A,B,C三站在一条东西走向的马路边.小马现在A站,小虎现在B站,两人分别从A,B两站同时出发,约定在C站会面商议事谊.若小马的行驶速度是小虎的行驶速度的,两人同时到达C站,且A,B两站之间的距离为8km,求C站与A,B两站之间的距离分别是多少?
15.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;
下面是某服装厂给出的演出服装的价格表
购买服装的套数
1套至45套
46套至90套
91套以上
每套服装的价格
60元
50元
40元
(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?
(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.
16.附加题:
材料:
股票市场,买、卖股票都要分别交纳印花税等有关税费.以沪市A股的股票交易为例,除成本外还要交纳:
①印花税:
按成交金额的0.1%计算;
②过户费:
③佣金:
按不高于成交金额的0.3%计算,不足5元按5元计算.
例:
某投资者以每股5.00元的价格在沪市A股中买入股票“金杯汽车”1000股,以每股5.50元的价格全部卖出,共盈利多少?
问题:
(1)小王对此很感兴趣,以每股5.00元的价格买入以上股票100股,以每股5.50元的价格全部卖出,则他盈利为 元.
(2)小张以每股a(a≥5)元的价格买入以上股票1000股,股市波动大,他准备在不亏不盈时卖出.请你帮他计算出卖出的价格每股是 元(用a的代数式表示),由此可得卖出价格与买入价格相比至少要上涨 %才不亏(结果保留三个有效数字).
(3)小张再以每股5.00元的价格买入以上股票1000股,准备盈利1000元时才卖出,请你帮他计算卖出的价格每股是多少元?
(精确到0.01元)
17.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.
(1)出发后 分钟时,甲乙两人第一次在正方形的顶点处相遇;
(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是 .
参考答案与试题解析
1.(2015秋•德州校级月考)牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g蛋白质、脂肪、碳水化合物产生的热量分别为16.8J、37.8J、16.8J.当牛奶和鸡蛋各取几克时,使它们质量之比为3:
【分析】设取牛奶3x克,取鸡蛋2x克,那么牛奶内面分别含有蛋白质、脂肪、碳水化合物各3x•3.5%g、3x•3.8%g、3x•4.9%g,同样可以得到鸡蛋内面分别含有蛋白质、脂肪、碳水化合物各2x•13.2%g、2x•10.7%g、2x•1.8%g,然后分别乘以每1g蛋白质、脂肪、碳水化合物产生的热量为16.8J、37.8J、16.8J即可得到方程解决问题.
【解答】解:
设取牛奶3x克,取鸡蛋2x克,
由题意得
16.8×
3x•3.5%+37.8×
3x•3.8%+16.8×
3x•4.9%+16.8×
2x•13.2%+37.8×
2x•10.7%+16.8×
2x•1.8%=1260,
解之得x≈60,
∴3x=180,
2x=120,
答:
当牛奶和鸡蛋各180克、120克时,使它们质量之比为3:
2,且产生1260J的热量.
2.(2015秋•荔湾区期末)汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?
【分析】由已知设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据已知分别表示出去时和原路返回的时间,由原路返回比去时多用了12分钟列出方程求解.
设去时上坡路为x千米,则下坡路为(2x﹣14)千米,根据题意得:
+﹣(+)=,
解得:
x=42,
则2x﹣14=2×
42﹣14=70,
去时上、下坡路程各为42千米、70千米.
3.(2015秋•揭阳期末)A、B两列火车长分别是120m和144m,A车比B车每秒多行5m.
【分析】
(1)设B车的速度为xm/s,则A车的速度为(x+5)m/s,根据“两列车相向行驶,从相遇到全部错开需8秒”列出方程,求出方程的解即可;
(2)设A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要t秒,根据此时甲车比乙车多行驶(120+144)m列出方程,求出方程的解即可.
(1)设B车的速度为xm/s,则A车的速度为(x+5)m/s.
由题意可得:
8〔x+(x+5)〕=120+144,
解得x=14,
则x+5=19.
A车、B车的速度分别为19m/s,14m/s;
(2)设A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要t秒.
依题意得:
19t=14t+120+144,
解得t=52.8.
若A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要52.8秒.
4.(2015秋•海安县校级月考)某商店开张为吸引顾客,所有商品一律按标价的八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%.问这种鞋的标价是多少元?
【分析】设这种鞋的标价是x元,利用销售价减成本等于利润列方程x•0.8﹣60=60×
40%,然后解一元一次方程即可.
设这种鞋的标价是x元,
根据题意得x•0.8﹣60=60×
40%,
解得x=105.
这种鞋的标价是105元.
5.(2014秋•克拉玛依区校级期末)一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.
【分析】应先设出飞机在无风时的速度为x,从而可知在顺风时的速度为飞机在无风中的速度加上风速,飞机在逆风中的速度等于飞机在无风中的速度减去风速,又已知了顺风飞行和逆风飞行所用的时间,再根据路程相等,列出等式,求解即可.
(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.
则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24
顺风飞行时:
S=v1t1
逆风飞行时:
S=v2t2
即S=(x+24)×
=(x﹣24)×
3
解得x=840,
无风时飞机的飞行速度为840千米每小时.
(2)两城之间的距离S=(x﹣24)×
3=2448千米
两城之间的距离为24