恒心甘肃省兰州市高三诊断考试数学理科试题及参考答案首发版Word文档格式.docx
《恒心甘肃省兰州市高三诊断考试数学理科试题及参考答案首发版Word文档格式.docx》由会员分享,可在线阅读,更多相关《恒心甘肃省兰州市高三诊断考试数学理科试题及参考答案首发版Word文档格式.docx(15页珍藏版)》请在冰豆网上搜索。
圆的半径圆的方程为:
12.解析:
为偶函数,的图象关于对称,的图象关于对称设(),则又,(),函数在定义域上单调递减,而故选B二、填空题13.14.15.16.15解析:
函数,则,令得,因为函数有两个极值点,所以有两个零点,等价于函数与的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,1)作的切线,设切点为(x0,y0),则切线的斜率,切线方程为.切点在切线上,则,又切点在曲线上,则,即切点为(1,0).切线方程为.再由直线与曲线有两个交点,知直线位于两直线和之间,其斜率2a满足:
02a1,解得实数a的取值范围是.16解析:
由,且,得,数列为等比数列,三、解答题17.解:
(),6分()由正弦定理得:
,即:
12分18.解:
()证明:
连接,则平面,在等腰梯形中,连接,平面6分()解法一:
在底面中作,连接,则,所以为平面与平面所成角的一个平面角在中,即平面与平面所成角(锐角)的余弦函数值为12分解法二:
由()知、两俩垂直,在等腰梯形中,连接因,,所以,建立如图空间直角坐标系,则,设平面的一个法向量由得可得平面的一个法向量又为平面的一个法向量因此所以平面和平面所成的角(锐角)的余弦值为.19.解()设印有“绿色金城行”的球有个,同时抽两球不都是“绿色金城行”标志为事件,则同时抽取两球都是“绿色金城行”标志的概率是由对立事件的概率:
=即,解得6分()由已知,两种球各三个,可能取值分别为,(或)则的分布列为:
所以12分20.解:
()依题意有,曲线的方程为6分()设直线的方程为,则,的中点为由得,即(舍)或,点的横坐标为过、三点的圆以点为圆心,为直径点的横坐标为过、三点的圆与轴相切12分21.解:
()又函数在定义域上是单调函数.或在上恒成立若在上恒成立,即函数是定义域上的单调地增函数,则在上恒成立,由此可得;
若在上恒成立,则在上恒成立.即在上恒成立.在上没有最小值不存在实数使在上恒成立.综上所述,实数的取值范围是.4分()当时,函数.令则显然,当时,,所以函数在上单调递减又,所以,当时,恒有,即恒成立.故当时,有8分()证法一:
由()可知()()()12分证法二:
设则欲证只需证只需证由()知即。
所以原命题成立。
方法三:
数学归纳法证明:
1、当时,左边=,右边=,原不等式成立。
2、设当时,原不等式成立,即则当时,左边=只需证明即证即证由()知即令,即有。
所以当时成立由1、2知,原不等式成立。
22.证明:
()切于点,平分,5分()同理,10分23.解:
()由曲线:
得即:
曲线的普通方程为:
由曲线:
得:
即:
曲线的直角坐标方程为:
5分()由()知椭圆与直线无公共点,椭圆上的点到直线的距离为所以当时,的最小值为10分24.解:
()由得,即,5分()由()知,令则,的最小值为4,故实数的取值范围是10分