最新中心极限定理证明实用word文档 16页Word格式文档下载.docx
《最新中心极限定理证明实用word文档 16页Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《最新中心极限定理证明实用word文档 16页Word格式文档下载.docx(14页珍藏版)》请在冰豆网上搜索。
那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.
二、中心极限定理
设是独立随机变量序列,假设存在,若对于任意的,成立
称服从中心极限定理.
设服从中心极限定理,则服从中心极限定理,其中为数列.
解:
服从中心极限定理,则表明
其中.由于,因此
故服从中心极限定理.
三、德莫佛-拉普拉斯中心极限定理
在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则
用频率估计概率时的误差估计.
由德莫佛—拉普拉斯极限定理,
由此即得
第一类问题是已知,求,这只需查表即可.
第二类问题是已知,要使不小于某定值,应至少做多少次试验?
这时利用求出最小的.
第三类问题是已知,求.
解法如下:
先找,使得.那么,即.若未知,则利用,可得如下估计:
.
抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?
由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.
已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:
的随机变量.求.
因为很大,于是
所以
利用标准正态分布表,就可以求出的值.
某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.
以表示第个分机用不用外线,若使用,则令;
否则令.则.
如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,
查表得,,故取.于是
取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.
根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:
1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.
将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.
由德莫佛—拉普拉斯极限定理,有
其中,即有
四、林德贝格-勒维中心极限定理
若是独立同分布的随机变量序列,假设,则有
证明:
设的特征函数为,则
的特征函数为
又因为,所以
于是特征函数的展开式
从而对任意固定的,有
而是分布的特征函数.因此,
成立.
在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.
设有个数,它们的近似数分别是,.,.令
用代替的误差总和.由林德贝格——勒维定理,
以,上式右端为0.997,即以0.997的概率有
设为独立同分布的随机变量序列,且互相独立,其中,证明:
的分布函数弱收敛于.
为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有
由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.
作业:
p222ex32,33,34,35
五、林德贝尔格条件
设为独立随机变量序列,又
令,对于标准化了的独立随机变量和
的分布
当时,是否会收敛于分布?
除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.
设是独立随机变量序列,又,,这时
(1)若是连续型随机变量,密度函数为,如果对任意的,有
(2)若是离散型随机变量,的分布列为
如果对于任意的,有
则称满足林德贝尔格条件.
以连续型情形为例,验证:
林德贝尔格条件保证每个加项是“均匀地斜.
令,则
于是
从而对任意的,若林德贝尔格条件成立,就有
这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.
六、费勒条件
设是独立随机变量序列,又,,称条件为费勒条件.
林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.
七、林德贝尔格-费勒中心极限定理
引理1对及任意的,
记,设,由于
因此,,其次,对,
用归纳法即得.
由于,因此,对也成立.
引理2对于任意满足及的复数,有
显然
因此,
由归纳法可证结论成立.
引理3若是特征函数,则也是特征函数,特别地
证明定义随机变量
其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.
林德贝尔格-费勒定理
定理设为独立随机变量序列,又.令,则
(1)
与费勒条件成立的充要条件是林德贝尔格条件成立.
(1)准备部分
记
(2)
显然(3)
(4)
以及分别表示的特征函数与分布函数,表示的分布函数,那么(5)
这时
因此林德贝尔格条件化为:
对任意,
(6)
现在开始证明定理.设是任意固定的实数.
为证
(1)式必须证明
(7)
先证明,在费勒条件成立的假定下,(7)与下式是等价的:
(8)
事实上,由(3)知,又因为
故对一切,
把在原点附近展开,得到
因若费勒条件成立,则对任意的,只要充分大,均有
(9)
(10)
对任意的,只要充分小,就可以有
(11)
因此,由引理3,引理2及(10),(11),只要充分大,就有
(12)
因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.
(2)充分性
先证由林德贝尔格条件可以推出费勒条件.事实上,
(13)
右边与无关,而且可选得任意小;
对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.
其次证明林德贝尔格条件能保证
(1)式成立.注意到(3)及(4),可知,
当时,
因此
(14)
对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.
(3)必要性
由于
(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,
(15)
上述被积函数的实部非负,故
而且
(16)
因为对任意的,可找到,使,这时由(15),(16)可得
故林德贝尔格条件成立.
八、李雅普诺夫定理
设为独立随机变量序列,又.令,若存在,使有
则对于任意的,有
第二篇:
大数定理中心极限定理证明
一,大数定律的证明
二,中心极限定理的证明
第三篇:
中心极限定理
§
5.3中心极限定理
我们曾特别强调了正态分布在概率论与数理统计中的地位与作用.为什么客观实际中许多随机变量服从正态分布?
是经验猜测还是确有科学的理论依据,下面我们就来解释这一问题.
我们已经知道,炮弹的弹着点射击误差服从正态分布,我们来分析其原因.要知道误差是什么样的随机变量,有必要研究一下造成误差的原因是什么?
每次射击后,炮弹会因为震动而造成很微小的偏差x1,炮弹外形细小的差别而引起空气阻力不同而出现的误差x2,炮弹前进时遇到的空气流的微小扰动而造成的误差x3,……等等,有许多原因,每种原因引起一个微小的误差都是随机的,而弹着点的总误差x是许多随机误差的总和,即x=?
xk,而且xk之间可以看成是相互独立的,因此要讨论x的分布就要讨论这些相互独
k
立的随机变量之和的分布.
在概率论中,我们把研究在一定条件下,大量独立随机变量和的极限分布是正态分布的那些定理通常叫做中心极限定理.本节只介绍两个条件简单,也较常用的中心极限定理.
定理4(同分布中心极限定理)设随机变量x1,x2,…,xn…相互独立,服从同一分布,且具有有限的数学期望和方差,e(xk)=?
d(xk)=?
?
(k=1,2,…)则随机变量
2?
xk-n?
k=1
n的分布函数对任意的x,满足
n?
n?
?
k=1?
x1?
2?
e-?
xt2
2dt
第四篇:
中心极限定理应用
中心极限定理及其应用
【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。
它们表明了当n充分大时,方差存在的n个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。
本文讨论了中心极限定理的内容、应用与意义。
【关键词】:
中心极限定理正态分布随机变量
一、概述
概率论与数理统计是研究随机现象、统计规律性的学科。
随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。
极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。
中心极限定理主要描述了在一定条件下,相互独立的随机变量序列x1、x2、…xn、…的部分和的分布律:
当n→∞时的极限符合正态分布。
因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。
二、定理及应用
1、定理一(林德贝格—勒维定理)
若?
k1,=a,?
2,…是一列独立同分布的随机变量,且e?
d?
k=k?
x2(?
2>
0),k=1,2,…则有limp(k?
1
na?
x)?
n
n12?
e?
t22dt。
当n充分大时,?
k?
1k?
na
n~n(0,1),k?
1?
nk~n(na,n?
)2
2、定理二(棣莫弗—拉普拉斯中心极限定理)
在n重伯努利试验中,事件a在每次试验中出现的概率为错误!
未找到引用源。
错误!
未
找到引用源。
为n次试验中事件a出现的次数,则limp(n?
npnpq?
1x?
t22dt
其中q?
p。
这个定理可以简单地说成二项分布渐近正态分布,因此当n充分大时,可
以利用该定理来计算二项分布的概率。
同分布下中心极限定理的简单应用
独立同分布的中心极限定理可应用于求随机变量之和sn落在某区间的概率和已知随机变量之和sn取值的概率,求随机变量的个数。
例1:
设各零件