新课标人教版八年级数学上册第十四章一次函数全章教案Word下载.docx
《新课标人教版八年级数学上册第十四章一次函数全章教案Word下载.docx》由会员分享,可在线阅读,更多相关《新课标人教版八年级数学上册第十四章一次函数全章教案Word下载.docx(28页珍藏版)》请在冰豆网上搜索。
(2)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(ms)的关系;
(3)银行规定:
五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:
1.分别指出下列各式中的常量与变量.
(1)圆的面积公式S=r2;
(2)正方形的l=4a;
(3)大米的单价为2.50元千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:
怎样列变量之间的关系式?
小结:
变量与常量作业:
阅读教材5页,11.1.2函数课题:
11.1.2函数知识目标:
理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:
会用变化的量描述事物情感目标:
回用运动的观点观察事物,分析事物重点:
函数的概念难点:
函数的概念教学媒体:
多媒体电脑,计算器教学说明:
注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:
小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?
周岁1234567890111213体重(kg)9.311.813.515.416.718.019.621.523.2527.630.232.5信息2:
当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的关系如图,你能填写下表吗?
时间min012345高度m新课:
问题:
(1)如图是某日的气温变化图。
1这张图告诉我们哪些信息?
2这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?
(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:
波长l(m)30050060010001500频率f(KHz)10006005003002001这表告诉我们哪些信息?
2这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?
一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:
例1判断下列变量之间是不是函数关系:
(4)长方形的宽一定时,其长与面积;
(5)等腰三角形的底边长与面积;
(6)某人的年龄与身高;
活动1:
阅读教材7页观察1.后完成教材8页探究,利用计算器发现变量和函数的关系思考:
自变量是否可以任意取值例2一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:
L)随行驶里程x(单位:
km)的增加而减少,平均耗油量为0.1Lkm。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?
解:
(1)y=50-0.1x
(2)0x500(3)x=200,y=30活动2:
练习教材9页练习小结:
(1)函数概念
(2)自变量,函数值(3)自变量的取值范围确定作业:
18页:
2,3,4题课题:
11.1.3函数图象
(一)知识目标:
学会用图表描述变量的变化规律,会准确地画出函数图象能力目标:
结合函数图象,能体会出函数的变化情况情感目标:
增强动手意识和合作精神重点:
函数的图象难点:
函数图象的画法教学媒体:
多媒体电脑,直尺教学说明:
在画图象中体会函数的规律教学设计:
下图是一张心电图,信息2:
下图是自动测温仪记录的图象,他反映了北京的春季某天气温T如何随时间的变化二变化,你从图象中得到了什么信息?
新课:
正方形的边长x与面积S的函数关系为S=x2,你能想到更直观地表示S与x的关系的方法吗?
一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph)。
例1下面的图象反映的过程是小明从家去菜地浇水,有去玉米地锄草,然后回家.其中x表示时间,y表示小名离家的距离.根据图象回答问题:
(7)菜地离小明家多远?
小明走到菜地用了多少时间?
;
(8)小明给菜地浇水用了多少时间?
(9)菜地离玉米地多远?
小明从菜地到玉米地用了多少时间?
(10)小明给玉米锄草用了多少时间?
(11)玉米地离小名家多远?
小明从玉米地走回家的平均速度是多少?
例2在下列式子中,对于x的每一确定的值,y有唯一的对应值,即y是x的函数,画出这些函数的图象:
(1)y=x+0.5;
(2)y=(x0)解:
教材16页练习1,2题思考:
画函数图象的一般步骤是什么?
(1)什么是函数图象
(2)画函数图象的一般步骤作业:
19:
5,7题课题:
11.1.3函数图象
(二)知识目标:
学会函数不同表示方法的转化,会由函数图象提取信息能力目标:
正确识别函数图象情感目标:
激发学生的探索精神重点:
利用函数图象解决问题难点:
从函数图象中提取信息教学媒体:
在画图象中找函数的规律教学设计:
信息2:
函数的表示方法为列表法、解析式法和图形法,这三种方法在解决问题时是可以相互转化的。
例1一水库的水位在最近5消耗司内持续上涨,下表记录了这5个小时水位高度.解:
(1)y=0.05t+10(0t7)
(2)当t=5+2=7时,y=0.05t+10=10.35预计2小时后水位将达到10.35米。
思考:
函数图象上的点的坐标与其解析式之间的关系?
例2已知函数y=2x-3,求:
(1)函数图象与x轴、y轴的交点坐标;
(2)x取什么值时,函数值大于1;
(3)若该函数图象和函数y=-x+k相交于x轴上一点,试求k的值.活动2:
在同一直角坐标系中,画出函数y=-x与函数y=2x-1的图象,并求出它们的交点坐标.练习:
教材18页:
练习1,2题小结:
(1)函数的三种表示方法;
(2)函数图象上点的坐标与函数关系式之间的关系;
作业:
20页8,9,10题1121正比例函数教学目标
(一)教学知识点认识正比例函数的意义掌握正比例函数解析式特点理解正比例函数图象性质及特点能利用所学知识解决相关实际问题教学重点理解正比例函数意义及解析式特点掌握正比例函数图象的性质特点能根据要求完成转化,解决问题教学难点正比例函数图象性质特点的掌握教学过程提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥鸟)套上标志环个月零周后人们在256万千米外的澳大利亚发现了它这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
这只燕鸥飞行个半月的行程大约是多少千米?
我们来共同分析:
一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
25600(304+7)200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数函数解析式为:
y=200x(0x127)这只燕鸥飞行个半月的行程,大约是x=45时函数y=200x的值即y=20045=9000(km)以上我们用y=200x对燕鸥在个月零周的飞行路程问题进行了刻画尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型类似于y=200x这种形式的函数在现实世界中还有很多它们都具备什么样的特征呢?
我们这节课就来学习导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?
这些函数有什么共同特点?
圆的周长L随半径r的大小变化而变化铁的密度为78gcm3铁块的质量m(g)随它的体积V(cm3)的大小变化而变化每个练习本的厚度为05cm一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化冷冻一个0的物体,使它每分钟下降2物体的温度()随冷冻时间t(分)的变化而变化解:
根据圆的周长公式可得:
L=2r依据密度公式p=可得:
m=78V据题意可知:
据题意可知:
T=-2t我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数(proportionalfunc-tion),其中k叫做比例系数我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
活动一活动内容设计:
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律y=2xy=-2x活动设计意图:
通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣教师活动:
引导学生正确画图、积极探索、总结规律、准确表述学生活动:
利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识活动过程与结论:
函数y=2x中自变量x可以是任意实数列表表示几组对应值:
x-3-2-10123y-6-4-20246画出图象如图
(1)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x-3-2-10123y6420-2-4-6画出图象如图
(2)两个图象的共同点:
都是经过原点的直线不同点:
函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;
经过第一、三象限函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;
经过第二、四象限尝试练习:
在同一坐标系中,画出下列函数的图象,并对它们进行比较y=xy=-xx-6-4-20246y=x-3-2-10123Y=-x3210-1-2-3比较两个函数图象可以看出:
两个图象都是经过原点的直线函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;
函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小总结归纳正比例函数解析式与图象特征之间的规律:
正比例函数y=kx(k是常数,k0)的图象是一条经过原点的直线当x0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;
当k0时,直线y=kx+b由左至右上升;
当k0时,y随x增大而增大当k0b0
(2)k0b0(3)k0(4)k0b0时,交点在原点上方当b=0时,交点即原点当b0时,交点在原点下方备用题:
若函数y=mx-(4m-4)的图象过原点,