完整人教版七年级数学上册全册教案 5Word文件下载.docx

上传人:b****2 文档编号:14665627 上传时间:2022-10-23 格式:DOCX 页数:64 大小:136.37KB
下载 相关 举报
完整人教版七年级数学上册全册教案 5Word文件下载.docx_第1页
第1页 / 共64页
完整人教版七年级数学上册全册教案 5Word文件下载.docx_第2页
第2页 / 共64页
完整人教版七年级数学上册全册教案 5Word文件下载.docx_第3页
第3页 / 共64页
完整人教版七年级数学上册全册教案 5Word文件下载.docx_第4页
第4页 / 共64页
完整人教版七年级数学上册全册教案 5Word文件下载.docx_第5页
第5页 / 共64页
点击查看更多>>
下载资源
资源描述

完整人教版七年级数学上册全册教案 5Word文件下载.docx

《完整人教版七年级数学上册全册教案 5Word文件下载.docx》由会员分享,可在线阅读,更多相关《完整人教版七年级数学上册全册教案 5Word文件下载.docx(64页珍藏版)》请在冰豆网上搜索。

完整人教版七年级数学上册全册教案 5Word文件下载.docx

根据需要,有时在正数前面也加上“+”(读作正)号。

注意:

①数0既不是正数,也不是负数。

0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。

②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。

三、巩固知识

1、课本P3练习

2、课本P4例

归纳:

在同一个问题中,分别用正数与负数表示的量具有相反的意义。

四、总结

①什么是具有相反意义的量?

②什么是正数,什么是负数?

③引入负数后,0的意义是什么?

五、布置作业

课本P5习题1.1第1、2题。

1.2.1有理数

1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。

2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。

正确理解有理数的概念

有理数的分类

一、知识回顾,导入新课

什么是正数,什么是负数?

问题1:

学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?

(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。

问题2:

观察黑板上的这么数,并给它们分类。

先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:

正整数、0、负整数、正分数、负分数。

二、讲授新课

1、有理数的定义

引导学生对前面的数进行概括,得出:

正整数、零、负整数统称为整数;

正分数和负分数统称分数。

整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。

2、有理数的分类

让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。

(1)按定义分类:

(2)按性质分类:

1.2.2数轴

1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

正确理解数轴的概念和用数轴上的点表示有理数

数轴的概念和用数轴上的点表示有理数

数轴的三要素:

原点、正方向、单位长度

2、画一条数轴。

3、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?

如果给你数轴上的点,你能读出它所表示的数吗?

4、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

5、每个数到原点的距离是多少?

由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,即课本P9的归纳。

课本P10练习1、2题

请学生作出总结:

什么是数轴?

数轴的三要素是什么?

如何画数轴?

如何在数轴上表示有理数?

课本P14习题1.2第2题。

1.2.3相反数

1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3、体验数形结合的思想。

求已知数的相反数

根据相反数的意义化简符号

1、相反数的定义

问题:

像2和-2,5和-5这样的两个数叫做互为相反数,试问要具备什么特点的两个数才是互为相反数?

(学生思考后举手回答)

归纳出:

只有符号不同的两个数叫做互为相反数。

特别地,0的相反数仍是0。

2、理解概念

判断:

①-2的相反数是()②-5是相反数()

③相反数等于它本身的数只有0()④符号不同的两个数互为相反数()

3、多重符号的化简

思考:

数轴上表示相反数的两个点和原点有什么关系?

a的相反数是-a,a表示任意数——正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号。

若把a分别换成+5,-7时,这些数的相反数怎样表示?

师生共同得出:

-(+5)=-5,-(-7)=7

在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?

如,+(-3),+(+6.2)

学生回答:

在一个数的前面加上“+”号仍表示这个数,因为“+”号可以省略。

课本P11练习1、2、3题

2、互为相反数的数在数轴上表示的点的特征

3、怎样求一个数的相反数?

怎样表示一个数的相反数?

课本P15习题1.2第3题。

1.2.4绝对值

1、理解绝对值的概念及其几何意义,通过从数形两个方面理解绝对值的意义,初步了解数形结合的思想方法。

2、会求一个数的绝对值,知道一个数的绝对值,会求这个数。

3、掌握绝对值的有关性质。

4、通过应用绝对值解决实际问题,培养学生深厚的学习兴趣,提高学生学数学的好奇心和求知欲。

绝对值的概念

绝对值的几何意义

请说出在数轴上,+3和-3分别在原点的哪边?

距离原点有几个单位长度?

那对于-5,+7,0呢?

请两位同学起来回答。

教师归纳:

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值,记作|a|,读作a的绝对值。

填表:

学生独立完成后,再对所得的规律

进行小组讨论。

教师归纳:

由绝对值的定义可知:

①一个正数的绝对值是它本身

②一个负数的绝对值是它的相反数③0的绝对值是0

把绝对值的代数定义用数学符号如何表示?

当a>0时,|a|=a;

当a=0时,|a|=0;

当a<0时,|a|=-a。

课本P12练习第1、2题。

本节课主要学习绝对值的概念、表示方法及其几何意义,并会求一个数的绝对值。

主要用到的思想是数形结合。

课本P15习题1.2第4题。

有理数的大小比较

1、能说出有理数大小的比较法则;

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小。

能利用数轴对多个有理数进行有序排列;

3、能正确应用符号“>”、“<”、“∵”、“∴”,写出表示推理过程中简单的因果关系。

运用法则借助数轴比较两个有理数的大小

利用绝对值概念比较两个负分数的大小

一、创设情境,引入新课

比较:

230-0

注:

在此练习中,对前三对数的比较学生基本都能解决,但对第四对数的比较会产生问题,由此引出新课。

规定:

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

根据以上规定,重点探讨怎样比较两个负数的大小。

通过观察,分别让学生说出以上几类数之间的大小关系,最后教师归纳并板书:

(1)正数大于0,0大于负数,正数大于负数;

(2)两个负数,绝对值大的反而小。

问题5:

课本P13“思考”,请学生回答。

课本P13例题、课本P14练习

这节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较;

另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用“<

”(或“>

”)连接,这种方法在比较多个有理数大小时非常简便.

课本P15习题1.2第5、6题。

1.3.1有理数的加法

(一)

1、使学生在现实情境中理解有理数加法的意义

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。

3、在教学中适当渗透分类讨论思想。

有理数的加法法则

异号两数相加的法则

1、同号两数相加的法则

一个物体作左右方向的运动,我们规定向左为负,向右为正。

向右运动5m记作5m,向左运动5m记作-5m。

如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

两次运动后物体从起点向右运动了8m。

写成算式就是5+3=8(m)

如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

两次运动后物体从起点向左运动了8m。

写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:

同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则

如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

两次运动后物体从起点向右运动了2m。

写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

经过两次运动后,物体又回到了原点。

也就是物体运动了0m。

师生共同归纳出:

互为相反数的两个数相加得零

你能用加法法则来解释这个法则吗?

可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

课本P18例1,例2、课本P118练习1、2题

运算的关键:

先分类,再按法则运算;

运算的步骤:

先确定符号,再计算绝对值。

要借用数轴来进一步验证有理数的加法法则;

异号两数相加,首先要确定符号,再把绝对值相加。

课本P24习题1.3第1、7题。

1.3.1有理数的加法

(二)

1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

2、培养学生观察、比较、归纳及运算能力。

有理数加法运算律及其运用。

灵活运用运算律

你会用文字表述加法的两条运算律吗?

你会用字母表示加法的这两条运算律吗?

(学生回答省略)

师生共同归纳:

加法交换律:

两个数相加,交换加数的位置,和不变。

即:

a+b=b+a

加法结合律:

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

即(a+b)+c=a+(b+c)

课本P20练习1、2题

本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:

有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。

解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

课本P24习题1.3第2、8题。

1.3.2有理数的减法

(一)

1、经历探索有理

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1