苏教版八年级二次根式经典例题分类Word格式文档下载.doc
《苏教版八年级二次根式经典例题分类Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《苏教版八年级二次根式经典例题分类Word格式文档下载.doc(6页珍藏版)》请在冰豆网上搜索。
一般地,形如的式子叫做二次根式。
注意:
这里被开方数可以是数,也可以是单项式,多项式,分式等代数式,其中是为二次根式的前提条件。
2、二次根式的性质:
(1)
(2)(3)
(4)(5)
3、二次根式的乘法法则:
两个二次根式相乘,被开方数相乘,根指数不变。
即。
4、二次根式的除法法则:
两个二次根式相除,被开方数相除,根指数不变。
5、最简二次根式:
满足下列两个条件的二次根式,叫做最简二次根式:
(1)被开方数中不含能开得尽方的因数或因式;
(2)根号下不含分母,分母中不含根号。
6、分母有理化:
把分母中的根号化去的方法叫做分母有理化。
分母有理化的依据是分式的基本性质和二次根式的性质公式。
有理化因式:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就称这两个代数式互为有理化因式。
一般常见的互为有理化因式有如下几种类型:
①与;
②与;
③与;
④与(其中都是最简二次根式)
7、同类二次根式:
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
8、二次根式的加减法
二次根式的加减,就是合并同类二次根式。
二次根式加减法运算的一般步骤:
(1)将每一个二次根式化为最简二次根式;
(2)找出其中的同类二次根式;
(3)合并同类二次根式。
【典型例题】
例、是怎样的实数时,下列各式有意义。
(1)
(2)
(3) (4)
例、
(1)计算;
(2)
(3)设为的三边,化简
例、化简:
(1)
(2)
(3) (4)
例、把下列各式中根号外的因式适当改变后移到根号内。
(1)
(2)
(3) (4)
例、计算:
(1)
(2)
(3) (4)
(5)
【练习】
一、填空题:
1、计算:
=________;
=________。
2、计算:
+=_________。
3、计算:
-=__________;
=_________.
4、若,则__________;
若,则__________。
5、若=0,则=__________。
6、当x_______时,有意义;
在中x的取值范围是___________。
二、选择题:
7、下列二次根式中,最简二次根式是()。
(A)(B)(C)(D)
8、当<
-4时,那么|2-|等于()
(A)4+(B)-(C)-4-(D)
9、化简|-2|+的结果是()。
(A)4-2(B)0(C)2(D)4
10、与的关系是()。
(A)互为相反数(B)互为倒数(C)相等(D)互为有理化因式
11、+2倒数是()。
(A)-2(B)--2(C)-+2(D)
12、下列各组中互为有理化因式的是()。
(A)与(B)与
(C)与(D)与
13、如果,则的关系是()。
(A)(B)(C)(D)
14、把根号外的因式移入根号内,得()。
(A)(B)(C)-(D)-
15、设4-的整数部分为,小数部分为,则的值为()。
(A)1-(B)(C)(D)-
三、计算题
16、17、
四、解答题
18、已知:
.
二次根式的灵活运用
1、化简代数式的结果是()
A.3B.C.D.
2、已知-1<
a<
0,化简得.
3、已知实数满足,那么等于
27.(8分)如图
(1),正方形ABCD中,点H从点C出发,沿CB运动到点B停止.连结DH交正方形对角线AC于点E,过点E作DH的垂线交线段AB、CD于点F、G.
(1)求证:
DH=FG;
(2)在图
(1)中延长FG与BC交于点P,连结DF、DP(如图
(2)),试探究DF
A
B
C
D
E
F
G
H
图
(1)
与DP的关系,并说明理由.
P
(第27题)
图
(2)
6