广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc

上传人:b****2 文档编号:14645150 上传时间:2022-10-23 格式:DOC 页数:9 大小:140KB
下载 相关 举报
广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc_第1页
第1页 / 共9页
广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc_第2页
第2页 / 共9页
广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc_第3页
第3页 / 共9页
广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc_第4页
第4页 / 共9页
广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc

《广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc(9页珍藏版)》请在冰豆网上搜索。

广东省广州市越秀区八年级下期末数学试卷及答案Word文档下载推荐.doc

B.两条对角线互相平分的四边形一定是平行四边形

C.两组邻角分别互补的四边形一定是平行四边形

D.两条对角线相等的四边形一定是平行四边形

8.在某次义务植树活动中,10名同学植树的棵树整理

成条形统计图如图所示,他们植树的棵树的平均数为a,

中位数为b,众数为c,则下列结论正确的是(  )

A.a=b B.b>a C.b=c D.c>b

9.已知一次函数y=kx+b的图象一定不通过第二象限,则系数k,b一定满足(  )

A.k>0,b>0 B.k>0,b≤0 C.k<0,b>0 D.k<0,b<0

10.汽车要从A地驰到B地,全程均为高速公路,汽车以每小时80公里的速度行进到C地休息了一小时,后因要赶时间,必须以接近每小时110公里的速度才能赶到B地.若汽车的耗油量与车速成正比,那么油箱中剩余的油量y与所用时间t之间的函数关系用下列那个图象表示比较适合(  )

A. B. C. D.

二.填空题(每小题3分,共18分)

11.如果一组数据:

5,x,9,4的平均数为6,那么x的值是      .

12.若二次根式在实数范围内有意义,则实数x的取值范围是      .

13.若直角三角形的两个锐角的比是2:

1,斜边长为8,则它的周长为      .

14.已知菱形的边长为6cm,一个内角为60°

,则菱形的面积为      cm2.

15.已知函数y=(k﹣2)x+1,若y随x的增大而减小,则实数k的取值范围是     .

16.已知△ABC的∠A,∠B和∠C的对边分别是a,b和c,下面给出了五组条件:

①∠A:

∠B:

∠C=1:

2:

3;

②a:

b:

c=3:

4:

5;

③2∠A=∠B+∠C;

④a2﹣b2=c2;

⑤a=6,b=8,c=13.

其中能独立判定△ABC是直角三角形的条件的序号分别是      (请写出所有的)

三.解答题

17.(18分)计算:

(1)﹣+

(2)(﹣)÷

5

(3)(2﹣)2﹣(+2)(+)

(4)已知x=﹣1,求代数式(2+)x2﹣(+1)x+7的值.

18.(8分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:

候选人

评委1

评委2

评委3

94

89

90

92

91

88

(1)分别求出甲、乙、丙三人的面试成绩的平均分、和;

(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.

19.(8分)如图,已知△ABC中,CD⊥AB于点D,若AB=5,BC=4,∠BCD=30°

求AC的长.

20.(8分)如图,已知点E是正方形ABCD边CD上的一点,点F在CB的延长线上,且DE=BF.求证:

△AFE是等腰直角三角形.

21.(10分)如图,在Rt△ABC中,∠ACB=90°

,AE平分∠BAC,交BC于点E,CD⊥AB于点D,EF⊥AB于点F,CD交AE于点G,CF交AE于点O.求证:

四边形CGFE是菱形.

22.(10分)已知直线y=﹣x+9与x轴交于点A,直线y=x+2与y轴交于点B.且这两条直线相交于点C.

(1)求出点A、B、C的坐标;

(2)求△ABC的面积S.

23.(10分)如图,已知四边形ABCD中,AD∥BC,∠B=90°

,AD=25cm,CD=15cm,BC=35cm.动点M在AD边上以2cm/秒的速度由A向D运动;

动点N在CB上以3cm/秒的速度由C向B运动,若点M,N分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,假设运动时间为t秒,问:

(1)当四边形ABNM是矩形时,求出t的值;

(2)在某一时刻,是否存在MN=CD?

若存在,则求出t的值;

若不存在,说明理由.

1.D2.A.3.B.4.C.5.C.6.A.7.B.8.D.9.B.10.C.

11. 6 .12. x>1 .13. 12+4 . 14. 18 .15. k<2 .

16. ①②④ 

17.解:

(1)=2;

(2)1﹣2;

(3)7﹣7;

(4)当x=﹣1时,原式=(2+)(﹣1)2﹣(+1)(﹣1)+7

=(2+)(4﹣2)﹣(3﹣1)+7

=2(2+)(2﹣)﹣2+7

=2(4﹣3)+5

=2+5

=7.

18.解:

(1)=(94+89+90)÷

3=273÷

3=91(分)

=(92+90+94)÷

3=276÷

3=92(分)

=(91+88+94)÷

∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分.

(2)甲的综合成绩=40%×

95+60%×

91=38+54.6=92.6(分)

乙的综合成绩=40%×

94+60%×

92=37.6+55.2=92.8(分)

丙的综合成绩=40%×

91=37.6+54.6=92.2(分)

∵92.8>92.6>92.2,

∴乙将被录用.

19.解:

∵CD⊥AB于点D,∠BCD=30°

,BC=4,

∴BD=BC=2,DC==2,

∵AB=5,∴AD=3,∴AC==.

20.证明:

∵四边形ABCD是正方形,

∴AB=AD,∠ABC=∠D=∠BAD=90°

,∴∠ABF=90°

∵在△BAF和△DAE中,

∴△BAF≌△DAE(SAS),∴AF=AE,∠FAB=∠EAD,

∵∠EAD+∠BAE=90°

,∴∠FAB+∠BAE=90°

∴△AEF是等腰直角三角形.

21.证明:

∵∠ACB=90°

,∴AC⊥EC.

又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.

在Rt△AEG与Rt△AEC中,

∴Rt△AEG≌Rt△AEC(HL);

∴GE=EC,

∵CD是AB边上的高,

∴CD⊥AB.

又∵EG⊥AB,

∴EG∥CD,

∴∠CFE=∠GEA.

又由

(1)知,Rt△AEG≌Rt△AEC,

∴∠GEA=∠CEA,

∴∠CEA=∠CFE,即∠CEF=∠CFE,

∴CE=CF,

∴GE=EC=FC.

又∵EG∥CD,即GE∥FC,

∴四边形CGFE是菱形.

22.解:

(1)设直线y=x+2与x轴交于点D,如图,

当x=0时,y=x+2=2,则B(0,2),当y=0时,﹣x+9=0,解得x=6,则A(6,0),

当y=0时,x+2=0,解得x=﹣8,则D(﹣8,0),

解方程组得,则C(4,3);

(2)S△ABC=S△CAD﹣S△ADB

(6+8)×

3﹣×

2

23.解:

∵设运动时间为t秒,

∴AM=2t(cm),MD=AD﹣AM=25﹣2t(cm),CN=3t(cm),BN=BC﹣CN=35﹣3t(cm),

(1)如图1:

∵AD∥BC,

∴当MA=BN时,四边形ABNM是平行四边形,

∵∠B=90°

∴四边形ABNM是矩形,

即2t=35﹣3t,

解得:

t=7,

∴t=7s时,四边形ABNM是矩形,

(2)①∵AD∥BC,

∴当四边形MNCD是平行四边形时,MN=CD,

此时有MD=CN,即3t=25﹣2t,

解得t=5.

∴当t=5s时,MN=CD;

②当四边形PQCD为等腰梯形时,MN=CD,

如图所示:

在Rt△MNF和Rt△CDE中,

∵MN=DC,MF=DE,

在Rt△MNF与Rt△CDE中,

∴Rt△MNF≌Rt△CDE(HL),

∴NF=CE,

∴NC﹣MD=NC﹣EFNQF+EC=2CE,即3t﹣(25﹣2t)=20,

t=9(s)

即当t=9(s)时,四边形PQCD为等腰梯形,此时MN=CD,

∴当t=5或t=9(s)时,MN=CD.

第9页(共9页)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 中考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1