圆与抛物线共存的综合题Word文档格式.doc

上传人:b****2 文档编号:14644533 上传时间:2022-10-23 格式:DOC 页数:16 大小:1.99MB
下载 相关 举报
圆与抛物线共存的综合题Word文档格式.doc_第1页
第1页 / 共16页
圆与抛物线共存的综合题Word文档格式.doc_第2页
第2页 / 共16页
圆与抛物线共存的综合题Word文档格式.doc_第3页
第3页 / 共16页
圆与抛物线共存的综合题Word文档格式.doc_第4页
第4页 / 共16页
圆与抛物线共存的综合题Word文档格式.doc_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

圆与抛物线共存的综合题Word文档格式.doc

《圆与抛物线共存的综合题Word文档格式.doc》由会员分享,可在线阅读,更多相关《圆与抛物线共存的综合题Word文档格式.doc(16页珍藏版)》请在冰豆网上搜索。

圆与抛物线共存的综合题Word文档格式.doc

∠ADE=∠BDF

∴△AED∽△BFD

当FB⊥AD时

∵∠AED=∠FBD=90°

∠ADE=∠FDB

∴△AED∽△FBD

∴BF的长为或.

【涉及知识点】抛物线、相似三角形、勾股定理、切线长定理

2.(12分)一条抛物线经过点与.

(1)求这条抛物线的解析式,并写出它的顶点坐标;

(2)现有一半径为1、圆心在抛物线上运动的动圆,当与坐标轴相切时,求圆心的坐标;

O

图15

(3)能与两坐标轴都相切吗?

如果不能,试通过上下平移抛物线使与两坐标轴都相切(要说明平移方法).

2.本小题满分12分

(1)∵抛物线过两点,

∴ 1分

解得 2分

  ∴抛物线的解析式是,顶点坐标为. 3分

  

(2)设点的坐标为,

  当与轴相切时,有,∴. 5分

由,得;

由,得.

  此时,点的坐标为. 6分

  当与轴相切时,有,∴. 7分

  由,得,解得;

  由,得,解得.

此时,点的坐标为,. 9分

综上所述,圆心的坐标为:

,,.

注:

不写最后一步不扣分.

(3)由

(2)知,不能. 10分

设抛物线上下平移后的解析式为,

若能与两坐标轴都相切,则,

即x0=y0=1;

或x0=y0=-1;

或x0=1,y0=-1;

或x0=-1,y0=1. 11分

取x0=y0=1,代入,得h=1.

∴只需将向上平移1个单位,就可使与两坐标轴都相切.

12

3.如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧).已知点坐标为(,).

(1)求此抛物线的解析式;

(第23题)

(2)过点作线段的垂线交抛物线于点,如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于,两点之间,问:

当点运动到什么位置时,的面积最大?

并求出此时点的坐标和的最大面积.

3.

(1)解:

设抛物线为.

∵抛物线经过点(0,3),∴.∴.

∴抛物线为. ……………………………3分

(2)答:

与⊙相交.…………………………………………………………………4分

证明:

当时,,.

∴为(2,0),为(6,0).∴.

设⊙与相切于点,连接,则.

∵,∴.

又∵,∴.∴∽.

∴.∴.∴.…………………………6分

∵抛物线的对称轴为,∴点到的距离为2.

∴抛物线的对称轴与⊙相交.……………………………………………7分

(3)解:

如图,过点作平行于轴的直线交于点.

可求出的解析式为.…………………………………………8分

设点的坐标为(,),则点的坐标为(,).

∴.

∵,

∴当时,的面积最大为.

此时,点的坐标为(3,).…………………………………………10分

4.(本题满分12分)

如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.

(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF的长;

(第24题图)

x

y

A

C

B

D

E

F

(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.

4.(本小题满分12分)

(1)∵抛物线经过点,,.

∴,解得.

∴抛物线的解析式为:

.…………………………3分

(2)易知抛物线的对称轴是.把x=4代入y=2x得y=8,∴点D的坐标为(4,8).

∵⊙D与x轴相切,∴⊙D的半径为8.…………………………4分

连结DE、DF,作DM⊥y轴,垂足为点M.

在Rt△MFD中,FD=8,MD=4.∴cos∠MDF=.

∴∠MDF=60°

,∴∠EDF=120°

.…………………………6分

∴劣弧EF的长为:

.…………………………7分

(3)设直线AC的解析式为y=kx+b.∵直线AC经过点.

∴,解得.∴直线AC的解析式为:

.………8分

设点,PG交直线AC于N,

则点N坐标为.∵.

P

G

N

M

∴①若PN︰GN=1︰2,则PG︰GN=3︰2,PG=GN.

即=.

m1=-3,m2=2(舍去).

当m=-3时,=.

∴此时点P的坐标为.…………………………10分

②若PN︰GN=2︰1,则PG︰GN=3︰1,PG=3GN.

,(舍去).当时,=.

∴此时点P的坐标为.

综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1︰2两部分.…………………12分

5.(12分)如图,已知点A(-3,0)和B(1,0),直线y=kx-4经过点A并且与y轴交于点C.

5

-3

-6

(1)求点C的坐标;

(2)求经过A、B、C三点的抛物线的解析式和对称轴;

(3)半径为1个单位长度的动圆⊙P的圆心P始终

在抛物线的对称轴上.当点P的纵坐标为5时,将

⊙P以每秒1个单位长度的速度在抛物线的对称轴上

移动.那么,经过几秒,⊙P与直线AC开始有公共点?

经过几秒后,⊙P与直线AC不再有公共点?

6.(本题满分14分)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于D,抛物线的顶点为E.

(1)求m的值及抛物线的解析式;

(2)设∠DBC=a,∠CBE=b,求sin(a-b)的值;

(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?

若存在,请指出点P的位置,并直接写出点P的坐标;

若不存在,请说明理由

6.

(1)由题意可知C(0,-3),,

∴抛物线的解析式为y=ax2-2ax-3(a>0),

过M作MN⊥y轴于N,连结CM,则MN=1,,

∴CN=2,于是m=-1.

同理可求得B(3,0),

∴a×

32-2-2a×

3-3=0,得a=1,

∴抛物线的解析式为y=x2-2x-3.

(2)由

(1)得A(-1,0),E(1,-4),D(0,1).

∴在Rt△BCE中,,,

∴,,∴,即,

∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=b,

因此sin(a-b)=sin(∠DBC-∠OBD)=sin∠OBC=.

(3)显然Rt△COA∽Rt△BCE,此时点P1(0,0).

过A作AP2⊥AC交y正半轴于P2,由Rt△CAP2∽Rt△BCE,得.

过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).

故在坐标轴上存在三个点P1(0,0),P2(0,1∕3),P3(9,0),使得以P、A、C为顶点的三角形与BCE相似.

图7

A.

7.(本题满分12分,每小题满分各4分)

如图7,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,

5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.

(1)求点B、C、D的坐标;

(2)如果一个二次函数图像经过B、C、D三点,

求这个二次函数解析式;

(3)P为x轴正半轴上的一点,过点P作与圆A相离并且与

x轴垂直的直线,交上述二次函数图像于点F,

当⊿CPF中一个内角的正切之为时,求点P的坐标.

7.解:

(1)∵点A的坐标为,线段,∴点D的坐标.----(1分)

连结AC,在Rt△AOC中,∠AOC=90°

,OA=3,AC=5,∴OC=4.-----(1分)

∴点C的坐标为;

------------------------(1分)

同理可得点B坐标为.---------------------(1分)

(2)设所求二次函数的解析式为,

由于该二次函数的图像经过B、C、D三点,则

------------------------(3分)

解得∴所求的二次函数的解析式为;

-------(1分)

(3)设点P坐标为,由题意得,----------------(1分)

且点F的坐标为,,,

∵∠CPF=90°

,∴当△CPF中一个内角的正切值为时,

①若时,即,解得,(舍);

②当时,解得(舍),(舍),-------(1分)

所以所求点P的坐标为(12,0).---------------------(1分)

8.抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b。

若关于的一元二次方程有两个相等的实数根。

(1)判断△ABM的形状,并说明理由。

(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,求该圆的圆心坐标。

8.解:

(1)令

由勾股定理的逆定理和抛物线的对称性知

△ABM是一个以、为直角边的等腰直角三角形

(2)设

∵△ABM是等腰直角三角形

∴斜边上的中线等于斜边的一半

又顶点M(-2,-1)

∴,即AB=2

∴A(-3,0),B(-1,0)

将B(-1,0)代入中得

∴抛物线的解析式为,即

图略

(3)设平行于轴的直线为

解方程组

得,(

∴线段CD的长为

∵以CD为直径的圆与轴相切

据题意得

解得

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1