云南省昆明市中考数学试卷解析版Word文档格式.doc
《云南省昆明市中考数学试卷解析版Word文档格式.doc》由会员分享,可在线阅读,更多相关《云南省昆明市中考数学试卷解析版Word文档格式.doc(22页珍藏版)》请在冰豆网上搜索。
分数(分)
80
85
90
95
那么这9名学生所得分数的众数和中位数分别是( )
A.90,90B.90,85C.90,87.5D.85,85
9.一元二次方程x2﹣4x+4=0的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
10.不等式组的解集为( )
A.x≤2B.x<4C.2≤x<4D.x≥2
11.下列运算正确的是( )
A.(a﹣3)2=a2﹣9B.a2•a4=a8C.=±
3D.=﹣2
12.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°
,连接AD、OC、BC,下列结论不正确的是( )
A.EF∥CDB.△COB是等边三角形
C.CG=DGD.的长为π
13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.﹣=20B.﹣=20C.﹣=D.﹣=
14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;
②∠AEH+∠ADH=180°
;
③△EHF≌△DHC;
④若=,则3S△EDH=13S△DHC,其中结论正确的有( )
A.1个B.2个C.3个D.4个
三、综合题:
共9题,满分70分
15.计算:
20160﹣|﹣|++2sin45°
.
16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB
求证:
AE=CE.
17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;
(1)这次抽样调查的样本容量是 ,并补全条形图;
(2)D等级学生人数占被调查人数的百分比为 ,在扇形统计图中C等级所对应的圆心角为 °
(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.
19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之和能被3整除的概率.
20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°
,测得大楼顶端A的仰角为45°
(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:
≈1.414,≈1.732)
21.(列方程(组)及不等式解应用题)
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;
购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
22.如图,AB是⊙O的直径,∠BAC=90°
,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:
CF是⊙O的切线;
(2)若∠F=30°
,EB=4,求图中阴影部分的面积(结果保留根号和π)
23.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A
(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?
若存在,求出点Q的坐标;
若不存在,请说明理由.
参考答案与试题解析
1.﹣4的相反数为 4 .
【考点】相反数.
【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.
【解答】解:
﹣4的相反数是4.
故答案为:
4.
2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为 6.73×
104 .
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×
10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67300有5位,所以可以确定n=5﹣1=4.
67300=6.73×
104,
6.73×
104.
﹣= .
【考点】分式的加减法.
【分析】同分母分式加减法法则:
同分母的分式相加减,分母不变,把分子相加减;
再分解因式约分计算即可求解.
﹣
=
=.
,则∠B的度数为 40°
.
【考点】等腰三角形的性质;
平行线的性质.
【分析】由等腰三角形的性质证得E=∠F=20°
,由三角形的外角定理证得∠CDF=∠E+∠F=40°
,再由平行线的性质即可求得结论.
∵DE=DF,∠F=20°
,
∴∠E=∠F=20°
∴∠CDF=∠E+∠F=40°
∵AB∥CE,
∴∠B=∠CDF=40°
40°
5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是 24 .
【考点】中点四边形;
矩形的性质.
【分析】先根据E,F,G,H分别是矩形ABCD各边的中点得出AH=DH=BF=CF,AE=BE=DG=CG,故可得出△AEH≌△DGH≌△CGF≌△BEF,根据S四边形EFGH=S正方形﹣4S△AEH即可得出结论.
∵E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,
∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.
在△AEH与△DGH中,
∵,
∴△AEH≌△DGH(SAS).
同理可得△AEH≌△DGH≌△CGF≌△BEF,
∴S四边形EFGH=S正方形﹣4S△AEH=6×
8﹣4×
×
3×
4=48﹣24=24.
24.
6.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为 ﹣ .
【考点】反比例函数系数k的几何意义;
平行线分线段成比例.
【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.
设点B坐标为(a,b),则DO=﹣a,BD=b
∵AC⊥x轴,BD⊥x轴
∴BD∥AC
∵OC=CD
∴CE=BD=b,CD=DO=a
∵四边形BDCE的面积为2
∴(BD+CE)×
CD=2,即(b+b)×
(﹣a)=2
∴ab=﹣
将B(a,b)代入反比例函数y=(k≠0),得
k=ab=﹣
【考点】简单几何体的三视图.
【分析】直接利用俯视图的观察角度从上往下观察得出答案.
由几何体可得:
圆锥的俯视图是圆,且有圆心.
故选:
B.
【考点】众数;
中位数.
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;
众数是一组数据中出现次数最多的数据,可得答案.
在这一组数据中90是出现次数最多的,故众数是90;
排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;
A.
【考点】根的判别式.
【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.
在方程x2﹣4x+4=0中,
△=(﹣4)2﹣4×
1×
4=0,
∴该方程有两个相等的实数根.
故选B.
【考点】解一元一次不等式组.
【分析】先求出每个不等式的解集,再根据口诀:
大小小大中间找确定不等式组的解集即可.
解不等式x﹣3<1,得:
x<4,
解不等式3x+2≤4x,得:
x≥2,
∴不等式组的解集为:
2≤x<4,
C.
【考点】同底数幂的乘法;
算术平方根;
立方根;
完全平方公式.
【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.
A、(a﹣3)2=a2﹣6a+9,故错误;
B、a2•a4=a6,故错误;
C、=3,故错误;
D、=﹣2,故正确,
故选D.
,连接AD、O