一阶偏微分方程基本知识Word文档下载推荐.doc

上传人:b****2 文档编号:14617150 上传时间:2022-10-23 格式:DOC 页数:16 大小:662KB
下载 相关 举报
一阶偏微分方程基本知识Word文档下载推荐.doc_第1页
第1页 / 共16页
一阶偏微分方程基本知识Word文档下载推荐.doc_第2页
第2页 / 共16页
一阶偏微分方程基本知识Word文档下载推荐.doc_第3页
第3页 / 共16页
一阶偏微分方程基本知识Word文档下载推荐.doc_第4页
第4页 / 共16页
一阶偏微分方程基本知识Word文档下载推荐.doc_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

一阶偏微分方程基本知识Word文档下载推荐.doc

《一阶偏微分方程基本知识Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《一阶偏微分方程基本知识Word文档下载推荐.doc(16页珍藏版)》请在冰豆网上搜索。

一阶偏微分方程基本知识Word文档下载推荐.doc

将第一式的两端同乘,第二式的两端同乘,然后相加,得到

这个微分方程关于变量t和是可以分离,因此不难求得其解为

,(1.5)

为积分常数。

(1.5)叫做(1.4)的首次积分。

注意首次积分(1.5)的左端作为x,y,和t的函数并不等于常数;

从上面的推导可见,当时微分方程组(1.4)的解时,才等于常数,这里的常数应随解而异。

因为式(1.4)是一个二阶方程组,一个首次积分(1.5)不足以确定它的解。

为了确定(1.4)的解,还需要找到另外一个首次积分。

将第一式两端同乘,第二式两端同乘,然后用第一式减去第二式,得到

亦即

积分得

,(1.6)

其中为积分常数。

利用首次积分(1.5)和(1.6)可以确定(1.4)的通解。

为此,采用极坐标,这样由(1.5)和(1.6)推得

或.

因此我们得到方程组(1.4)的通解为

,.(1.7)

例2求解微分方程组(1.8)

其中是给定的常数。

解利用方程组的对称性,可得

从而得到首次积分

(1.9)

其中积分常数。

同样我们有

由此又得另一个首次积分

(1.10)

有了首次积分(1.9)和(1.10),我们就可以将u和v用w表示,代入原方程组(1.8)的第三式,得到

(1.11)

其中常数a,b依赖于常数,而常数

注意(1.11)是变量可分离方程,分离变量并积分得到第三个首次积分

(1.12)

其中是积分常数。

因为方程组(1.8)是三阶的,所以三个首次积分(1.9)、(1.10)和(1.12)在理论上足以确定它的通解

但是由于在式(1.12)中出现了椭圆积分,因此不能写出上述通解的具体表达式。

现在我们考虑一般的阶常微分方程

,,(1.13)

其中右端函数在内对连续,而且对是连续可微的。

定义1设函数在的某个子域内连续,而且对是连续可微的。

又设不为常数,但沿着微分方程(1.3)在区域G内的任意积分曲线

函数V取常值;

或当时,有

=常数,

这里的常数随积分曲线而定,则称

=C(1.14)

为微分方程(1.13)在区域G内的首次积分。

其中C是一个任意常数,有时也称这里的函数为(1.13)的首次积分。

例如(1.5)和(1.6)都是微分方程(1.4)在某个区域内的首次积分。

这里对区域G有限制,是要求首次积分(1.5)和(1.6)必须是单值的连续可微函数。

因此区域G内不能包括原点,而且也不能有包含原点的回路。

同理,式(1.9)、(1.10)和(1.12)都是方程(1.8)的首次积分。

对于高阶微分方程(1.1),只要做变换(1.2),就可以把它化成一个与其等价的微分方程组。

因此,首次积分的定义可以自然地移植到n阶方程(1.1)。

而其首次积分的一般形式可以写为

(1.15)

例如,设二阶微分方程组

用乘方程的两端,可得

然后积分,得到一个首次积分

一般的,阶常微分方程有个独立的首次积分,如果求得阶常微分方程组的个独立的首次积分,则可求阶常微分方程组的通解。

1.2首次积分的性质和存在性

关于首次积分的性质,我们不加证明地列出下面的定理。

定理1设函数在区域G内是连续可微的,而且它不是常数,则

(1.16)

是微分方程(1.13)在区域G内的首次积分的充分必要条件是

(1.17)

是关于变量的一个恒等式。

这个定理实际上为我们提供了一个判别一个函数是否是微分方程(1.13)首次积分的有效方法。

因为根据首次积分的定义,为了判别函数是否是微分方程(1.13)在G内的首次积分,我们需要知道(1.13)在G内的所有积分曲线。

这在实际上是由困难的。

而定理1避免了这一缺点。

定理2若已知微分方程(1.13)的一个首次积分(1.14),则可以把微分方程(1.13)降低一阶。

设微分方程组(1.13)有n个首次积分

,(1.18)

如果在某个区域G内它们的Jacobi行列式

,(1.19)

则称它们在区域G内是相互独立的。

定理3设已知微分方程(1.13)的n个相互独立的首次积分(1.18),则可由它们得到(1.13)在区域G内的通解

,(1.20)

其中为n个任意常数(在允许范围内),而且上述通解表示了微分方程(1.13)在G内的所有解。

关于首次积分的存在性,我们有

定理4设,则存在的一个邻域,使得微分方程(1.13)在区域内有n个相互独立的首次积分。

定理5微分方程(1.13)最多只有n个相互独立的首次积分。

定理6设(1.18)是微分方程(1.13)在区域G内的n个相互独立的首次积分,则在区域G内微分方程(1.13)的任何首次积分

=C,

可以用(1.18)来表达,亦即

其中是某个连续可微的函数。

为了求首次积分,也为了下一节的应用,人们常把方程组(1.3)改写成对称的形式

这时自变量和未知函数的地位是完全平等的。

更一般地,人们常把上述对称式写成

(1.21)并设内部不同时为零,例如如果设则(1.21)等价于

(1.22)

请注意,式(1.22)中的相当于自变量,相当于未知函数,所以在方程组(1.21)中只有n--1个未知函数,连同自变量一起,共有n个变元。

不难验证,对于系统(1.21),定理1相应地改写为:

设函数连续可微,并且不恒等于常数,则=C是(1.21)的首次积分的充分必要条件是关系式

(1.23)

在G内成为恒等式。

如果能得到(1.21)的n-1个独立的首次积分,则将它们联立,就得到(1.21)的通积分。

方程写成对称的形式后,可以利用比例的性质,给求首次积分带来方便。

例3求的通积分。

解将前两个式子分离变量并积分,得到方程组的一个首次积分

(1.24)

其中是任意常数,再用比例的性质,得

两边积分,又得到一个首次积分

,(1.25)

其中是任意常数。

(1.24)和(1.25)是相互独立的,将它们联立,便得到原方程组得通积分

,.

例4求的通积分。

解利用比例的性质,可以得到

于是有

分别积分,就得到两个首次积分

将它们联立,就得到原系统的通积分,其中为任意常数。

例5求解二体问题,即求解方程组

其中常数是相对静止的这个天体的质量。

现在求二体问题的运动轨线。

以x乘第二式两边,以y乘第三式两边,然后相减,得

积分便得到

(1.26)

这里是任意常数,用类似的方法,可以得到

其中都是任意常数。

分别用x、y、z乘(1.26),(1.27)和(1.28)的两边,然后三式相加,得到

(1.29)

这时一个平面方程。

说明二体问题的运动轨迹位于(1.29)所表示的平面内。

因此二体问题的轨迹是一条平面曲线。

重新选取坐标平面,不妨将轨迹线所在的平面选为(x,y)平面,于是二体问题的运动方程是

由这两式可以看到

上式可以写成

两边积分,得到一个首次

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1