《商业银行业务与经营》第三版课后计算题文档格式.docx
《《商业银行业务与经营》第三版课后计算题文档格式.docx》由会员分享,可在线阅读,更多相关《《商业银行业务与经营》第三版课后计算题文档格式.docx(11页珍藏版)》请在冰豆网上搜索。
第五章
我国商业银行信贷资产管理现状——处理不良资产的配套改革
国有企业改革,真正实现国有企业经营机制的转换,才能保证贷款行为是建立在商业基础之上的。
发展资本市场是解决国有企业对银行过份依赖的重要途径之一,提高直接融资比例可以减轻银行的借贷压力,还可以充分利用资本市场发挥对企业的监督功能。
改革银行体系,加强竞争,消除垄断是提高银行体系经营效率的关键。
此外,加强中央银行监管,提高监管水平,完善政府财政职能,才能最终解决银行体系不良资产的产生机制。
第六章
成本收益定价法例题P152
第七章
1、假设刘辉从银行获得一笔汽车贷款,贷款金额为50000元,贷款期限为1年,按月等额本金还款。
假设银行采用成本加成定价模型对此笔贷款进行定价。
经银行核算,此笔贷款的资金成本为3%,贷款费用为2.5%,风险补偿费用为1%,银行的目标利润为2.2%。
请计算刘辉的贷款利率以及实际贷款利率。
解:
根据成本加成定价模型:
贷款价格=资金成本+贷款费用+风险补偿费用+目标利润,
所以贷款利率=3%+2.5%+1%+2.2%=8.7%;
根据年百分率法,实际贷款利率=50000*8.7%/(50000*0.5)=17.4%
2、假设王宏申请1年期个人综合消费贷款20000元,他的信用评分属于B级,银行采用基准利率加点定价来确定利率,标准如下表所示。
请问:
在风险乘数加点和风险加点方法下,王宏的贷款利率是多少?
基准利率
风险乘数
风险加点
A级
B级
C级
6%
基准利率*1.1
基准利率*1.2
基准利率*1.3
+1%
+2%
+3%
a.在风险乘数加点和风险加点方法下,王宏的贷款利率是多少?
b.如果使用贴现法贷款,王宏的实际贷款利率是多少?
c.如果按月支付利息,分两期等额还本,列出风险加点定价法下王宏的现金流。
a、在风险乘数加点方法下:
贷款利率=基准利率*风险乘数=6%*1.2=7.2%;
在风险加点方法下:
贷款利率=基准利率+风险乘数=6%+2%=8%;
b、根据贴现利率法:
在风险乘数加点方法下,实际利率=20000*7.2%/(20000*(1–7.2%))=7.8%;
在风险加点方法下,实际利率=20000*8%/(20000*(1–8%))=8.7%;
c、现金流如下:
1~5月应付利息为:
20000*8%*1/12=133.33元;
6月应付本金和利息为:
20000/2+133.33=10133.33元;
20000/2*8%*1/12=66.67元;
20000/2+66.67=10066.67元;
9、林佳获得了期限1年、金额6000元的耐用消费品贷款,按月等额还本,半年后她因加薪,提出提前还贷申请,请用78s条款计算银行应该给与林佳的利息回扣。
根据78s条款法,银行应给予林佳的利息回扣率为:
(1+2+3+4+5+6)/78*100%=26.93%。
第八章
1、假设林先生从银行获得一笔住房装修贷款,贷款金额为100000元,贷款期限为2年,贷款利率为4.8%。
1年后利率调整为6%。
请问在按月等额本息、按月等额本金还款方式下,第18个月林先生分别需要偿还多少本金和利息?
列出林先生每月的现金流表。
第一年的月利率4‰,第二年的月利率=5‰
(1)按月等额本息还款
第一年每月还款额为(元)
月份
每月偿还本金
每月偿还利息
剩余本金
1
3978.188
400.000
96021.812
2
3994.101
384.087
92027.711
3
4010.077
368.111
88017.634
4
4026.117
352.071
83991.516
5
4042.222
335.966
79949.294
6
4058.391
319.797
75890.904
7
4074.624
303.564
71816.279
8
4090.923
287.265
67725.356
9
4107.287
270.901
63618.070
10
4123.716
254.472
59494.354
11
4140.211
237.977
55354.143
12
4156.771
221.417
51197.372
注:
其中每月偿还利息=上一个月剩余本金数*4‰
每月偿还本金=每月还款额-每月偿还利息
第二年每月还款额为(元)
续上表
13
4150.388
255.987
47046.984
14
4171.140
235.235
42875.844
15
4191.996
214.379
38683.848
16
4212.956
193.419
34470.892
17
4234.021
172.354
30236.872
18
4255.191
151.184
25981.681
19
4276.467
129.908
21705.215
20
4297.849
108.526
17407.366
21
4319.338
87.037
13088.027
22
4340.935
65.440
8747.093
23
4362.640
43.735
4384.453
24
21.922
0.000
(2)按月等额本金还款
每月等额本金=100000÷
24=4166.667(元)
第一年每月利息=(100000-已还本金)*4‰
第二年每月利息=(100000-已还本金)*5‰
每月还本金
每月还利息
4166.667
383.333
366.667
350.000
333.333
316.667
300.000
283.333
266.667
250.000
233.333
216.667
200.000
229.167
208.333
187.500
166.667
145.833
125.000
104.167
83.333
62.500
41.667
20.833
由以上几个表可知:
按月等额本息还款,第18个月需偿还4255.191元本金和151.184元利息;
按月等额本金还款,第18个月需偿还4166.667元本金和125.000元利息。
1、小刘用价值500万元的别墅进行抵押,获得了一笔个人经营抵押贷款。
授信额度为抵押品价值的70%,额度期限10年,可循环使用。
如果小刘使用了200万元,问他还可用多少额度?
如果小刘4年后归还了150万,他的可用额度又为多少?
小刘的授信额度为500×
70%=350(万元)
使用了200万元,还可用350-200=150(万元)
4年后归还了150万元,可用额度为150+150=300(万元)
2、王丽的信用卡授信额度为30000元,每月25日为账单日,账单日后20天为最后还款日。
5月1日收到对账单,到期还款日为5月15日,应还款余额为20000元,最低还款额为2000元,王丽的上次对账单余额为0,从上次对账单日到本次对账单日期间王丽只消费1笔:
3月31日,金额为20000元。
如果王丽本期偿还1500元,请问她6月份收到的对账单上透支利息、滞纳金分别是多少?
透支利息=(20000-1500)×
0.05%×
31=286.75(元)
滞纳金=(2000-1500)×
5%=25(元)
4、赵小平获得了金额300000元、年期10、利率为9%的固定利率住房贷款。
约定还款方式为按月等额本息,试计算赵小平的每月支付额和利息总额。
月利率=9%÷
12=7.5‰
按月等额本息,则每月还款额应为
=3800.2732(元)
还款总额=3800.2732×
120=456032.78(元)
利息总额=456032.78-300000=156032.78(元)
第十章
5.A、B两家是两家信用等级不同的银行,作为AAA级的A银行与作为BBB级B银行借款成本各不相同。
A银行固定利率借款成本为3%,浮动利率借款成本为LIBOR+0.25%,B银行固定利率借款成本为4%,浮动利率借款成本为LIBOR+0.75%。
试问A、B两家银行是否存在利率互换的可能性?
如果进行利率互换,潜在的总收益是多少?
(1)信用等级:
A:
AAA,B:
BBB
固定利率借款成本:
3%,B:
4%
浮动利率借款成本:
LIBOR+0.25%,B:
LIBOR+0.75%
A的借