中考数学复习二次函数的图象及性质含答案Word文档格式.docx

上传人:b****1 文档编号:14520824 上传时间:2022-10-23 格式:DOCX 页数:15 大小:117.83KB
下载 相关 举报
中考数学复习二次函数的图象及性质含答案Word文档格式.docx_第1页
第1页 / 共15页
中考数学复习二次函数的图象及性质含答案Word文档格式.docx_第2页
第2页 / 共15页
中考数学复习二次函数的图象及性质含答案Word文档格式.docx_第3页
第3页 / 共15页
中考数学复习二次函数的图象及性质含答案Word文档格式.docx_第4页
第4页 / 共15页
中考数学复习二次函数的图象及性质含答案Word文档格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

中考数学复习二次函数的图象及性质含答案Word文档格式.docx

《中考数学复习二次函数的图象及性质含答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《中考数学复习二次函数的图象及性质含答案Word文档格式.docx(15页珍藏版)》请在冰豆网上搜索。

中考数学复习二次函数的图象及性质含答案Word文档格式.docx

0;

②b2>

4ac;

③a+b+2c<

④3a+c<

0.

其中正确的是(  )

A.①④B.②④C.①②③D.①②③④

7.(2017邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是________.(写一个即可)

8.(2017衡阳)已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1________y2.(填“<”、“>”或“=”)

9.(2017上海)已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是__________.(只需写一个)

10.(2017阜阳一模)若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b+k=________.

11.(10分)(2017合肥庐阳区模拟)下表给出了代数式-x2+bx+c与x的一些对应值:

x

-2

-1

1

2

3

-x2+bx+c

5

n

c

-3

-10

(1)根据表格中的数据,确定b,c,n的值;

(2)设y=-x2+bx+c,直接写出0≤x≤2时y的最大值.

12.(12分)(2017合肥蜀山区模拟)已知二次函数y=2x2-4x-6.

(1)用配方法将y=2x2-4x-6化成y=a(x-h)2+k的形式,并写出对称轴和顶点坐标;

(2)当0<

x<

4时,求y的取值范围;

(3)求函数图象与两坐标轴交点所围成的三角形的面积.

13.(12分)(2017南京)已知函数y=-x2+(m-1)x+m(m为常数).

(1)该函数的图象与x轴公共点的个数是(  )

A.0  B.1  C.2  D.1或2

(2)求证:

不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;

(3)当-2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.

能力提升拓展

1.(2017徐州)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是(  )

A.b<

1且b≠0B.b>

C.0<

b<

1D.b<

2.(2017贵港)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是(  )

A.y=(x-1)2+1B.y=(x+1)2+1

C.y=2(x-1)2+1D.y=2(x+1)2+1

第2题图

3.(2017随州)对于二次函数y=x2-2mx-3,下列结论错误的是(  )

A.它的图象与x轴有两个交点

B.方程x2-2mx=3的两根之积为-3

C.它的图象的对称轴在y轴的右侧

D.x<m时,y随x的增大而减小

4.(2017鄂州)如图,抛物线y=ax2+bx+c的图象交x轴于A(-2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:

①2b-c=2;

②a=;

③ac=b-1;

④>

其中正确的个数有(  )

   

第4题图

A.1个B.2个C.3个D.4个

5.(2017陕西)已知抛物线y=x2-2mx-4(m>

0)的顶点M关于坐标原点O的对称点为M′.若点M′在这条抛物线上,则点M的坐标为(  )

A.(1,-5)B.(3,-13)

C.(2,-8)D.(4,-20)

6.(2017乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m的值是(  )

A.B.

C.或D.-或

7.(12分)(2017安庆一模)如图,直线y=-x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.

(1)求b、c的值;

(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E,当线段DE的长度最大时,求点D的坐标.

第7题图

8.(12分)(2017杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.

(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;

(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;

(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<

n,求x0的取值范围.

9.(14分)(2017温州)如图,过抛物线y=x2-2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为-2.

(1)求抛物线的对称轴和点B的坐标;

(2)在AB上任取一点P,连接OP,作点C关于直线OP的对称点D.

①连接BD,求BD的最小值;

②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.

第9题图

10.(14分)如图,抛物线y=a(x-1)(x-3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.

(1)写出C,D两点的坐标(用含a的式子表示);

(2)设S△BCD∶S△ABD=k,求k的值;

(3)当△BCD是直角三角形时,求对应抛物线的解析式.

第10题图

教材改编题

1.(沪科九上P23练习第2题改编)已知正比例函数y=x与二次函数y=ax2+bx+c的图象如图所示,则一次函数y=(a+c)x+ac的图象可能是(  )

2.(沪科九上P27习题21.2第8题改编)若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5图象上的三点,则y1,y2,y3的大小关系是________.(用<

号连接)

答案

1.D 【解析】逐项分析如下:

选项

逐项分析

正误

A

∵a=-2<

0,∴函数图象开口向下

B

函数图象的对称轴是直线x=m

C

0,∴当x=m时,y取最大值0

D

∵当x=0时,y=-2m2,∴函数图象与y轴交于点(0,-2m2)

×

2.A 【解析】对称轴x=-=1,代入表达式可得y=m2+1,∴顶点坐标为(1,m2+1),∵m2≥0,∴m2+1≥1,

∴顶点坐标在第一象限.

3.A 【解析】由函数图象左右平移的规律遵从“左加右减”可知:

当y=3x2-3的图象向右平移3个单位时,将解析式中的每一个x变为x-3,得到新抛物线的解析式为y=3(x-3)2-3.

4.D 【解析】当a>0时,y=的图象位于第一、三象限,y=-ax2+a开口向下,顶点在y轴的正半轴上,无对应选项;

当a<0时,y=的图象位于第二、四象限,y=-ax2+a开口向上,顶点在y轴的负半轴上,故选D.

5.D 【解析】由消去y得到x2-2x+1=0,∵△=0,∴直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,观察图象可知:

y1≤y2,故选D.

第5题解图

6.C 【解析】抛物线开口向上,则a>0,抛物线对称轴为x=1,则b=-2a,即b<0,∴ab<

0,故①正确;

抛物线与x轴有两个交点,则b2-4ac>0,即b2>

4ac,故②正确;

抛物线与y轴交于负半轴,因此c<0.则a+b+2c=a-2a+2c=-a+2c<0,故③正确;

由图象可知,当x=-1时,y=a-b+c>0,把b=-2a代入,得3a+c>0故④错误.故选C.

7.-1(答案不唯一) 【解析】根据二次函数图象及性质可知,抛物线的开口方向与a符号有关,当a>0时,抛物线的开口向上;

当a<0时,抛物线开口向下,则a为任何一个小于0的实数.

8.>

 【解析】∵抛物线y=-(x-1)2的对称轴为直线x=1,,∴当x>

1时,y随着x的增大而减小,∵a>

2>

1,∴y1>

y2.

9.y=x2-1(答案不唯一) 【解析】∵二次函数的图象开口向上,∴a>

0,顶点坐标为(0,-1),可设这个二次函数为y=ax2-1,∴解析式可以是y=x2-1.

10.-3 【解析】∵y=(x-2)2+k=x2-4x+4+k,∴b=-4,4+k=5,解得k=1,∴b+k=-4+1=-3.

11.解:

(1)根据表格数据可得

解得,

∴-x2+bx+c=-x2-2x+5,

当x=-1时,-x2-2x+5=6,即n=6;

(2)5 【解法提示】根据表中数据得当0≤x≤2时,y的最大值是5.

12.解:

(1)y=2x2-4x-6=2(x2-2x+1-1)-6

=2(x2-2x+1)-2-6=2(x-1)2-8,

∴抛物线的对称轴为x=1,顶点坐标为(1,-8);

(2)当x=1时,y有最小值,最小值为-8,

∵0<

4,

∴当x=4时,y=2·

(4-1)2-8=10,

∴y的最大值为10,

∴y的取值范围是-8≤y<

10;

(3)当x=0时,y=-6,

当y=0时,2x2-4x-6=0,解得x=3或x=-1,

∴函数图象与两坐标轴交点所围成的三角形的面积为×

6=12.

13.

(1)解:

D;

【解法提示】b2-4ac=(m-1)2+4m=(m+1)2≥0,

∴该函数的图象与x轴可能有1或2个公共点.

(2)证明:

∵y=-x2+(m-1)x+m=-(x-)2+,

∴该函数的顶点坐标为(,).

把x=代入y=(x+1)2,得y=(+1)2=,

因此,不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;

(3)解:

设函数图象顶点纵坐标z=,

当m=-1时,z有最小值0;

当m<

-1时,z随m的增大而减小;

当m>

-1时,z随m的增大而增大.

又当m=-2时,z==;

当m=3时,z==4,

因此,当-2≤m≤3时,该函数的图象的顶点纵坐标的取值范围是0≤z≤4.

1.A 【解析】∵函数y=x2-2x+b的图象与坐标轴有三个交点,∴它与x轴有两个交点,则(-2)2-4b>

0,且b≠0,解得b<

1且b≠0.

2.C 【解析】由题图上的点坐标(-1,0)、(1,0)、(0,-2)求得抛物线的解析式为y=2x2-2,将此抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到抛物线解析式为y=2(x-1)2-2+3,即y=2(x-1)2+1.

3.C 【解析】b2-4ac=(-2m)2-4×

(-3)=4m2+12,4m2≥0,∴b2-4ac=4m2+12>0,∴图象与x轴有两个交点,故A正确;

令y=0,得x2-2mx-3=0,方程的解即抛物线与x轴交点的横坐标,由A知图象与

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 成考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1