概率与统计(文)Word格式文档下载.doc
《概率与统计(文)Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《概率与统计(文)Word格式文档下载.doc(16页珍藏版)》请在冰豆网上搜索。
6.【2018四川广元高三第一次适应性统考】在区间[-1,1]上任选两个数,则的概率为()
7.【2018四川内江】从集合中随机抽取两数,则满足的概率是
8.【2018四川内江】下列说法中正确的是()
A.先把高三年级的2000名学生编号:
1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为的学生,这样的抽样方法是分层抽样法
B.线性回归直线不一定过样本中心点
C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D.若一组数据1、、3的平均数是2,则该组数据的方差是
9.【2018云南】如果一组数x1,x2,…,xn的平均数是,方差是s2,则另一组数x1+,
x2+,…,xn+的平均数和方差分别是( )
A.,s2B.+,s2C.+,3s2D.+,3s2+2s+2
10.【2018云南】已知20名学生某次数学考试成绩(单位:
分)的频率分布直方图如下图所示.则成绩落在[50,60)与[60,70)中的学生人数分别为( )
A.2,3B.2,4C.3,2D.4,2
11.【2018江西】要从已编号()的枚最新研制的某型导弹中随机抽取枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的7枚导弹的编号可能是( )
A.B.C.D.
二、填空题:
12.【2018河北衡水】我市某小学三年级有甲、乙两个班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,现在需要各班按男、女生分层抽取的学生进行某项调查,则两个班共抽取男生人数是__________.
13.【2018陕西榆林二中】某学校为了调查学生在学科教辅书方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出的钱数在的同学比支出的钱数在的同学多26人,则的值为__________.
14.【2018山东】在区间内随机取一个数x,则事件“”发生的概率是________.
15.【2018河南高三12月联考】某班学生,在高三8次月考的化学成绩用茎叶图表示如图,其中学生的平均成绩与学生的成绩的众数相等,则__________.
三、解答题:
16.【2018河南衡水武邑中学】2017年5月14日至15日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为.
(1)求的值;
(2)估计甲品牌产品寿命小于200小时的概率;
(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.
17.【2018河南安阳】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:
先销售该产品50天,统计发现每天的销售量分布在内,且销售量的分布频率
.
(Ⅰ)求的值.
(Ⅱ)若销售量大于等于80,则称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).
18.【2018广东茂名高三第一次综合测试】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:
温度x/°
C
21
23
24
27
29
32
产卵数y/个
6
11
20
57
77
经计算得:
,,,,
,线性回归模型的残差平方和,e8.0605≈3167,其中xi,yi分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.
(i)试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
(ii)用拟合效果好的模型预测温度为35°
C时该种药用昆虫的产卵数(结果取整数).
附:
一组数据(x1,y1),(x2,y2),...,(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计为
=−;
相关指数R2=.
19.【2018重庆九校联盟】某社区为了解辖区住户中离退休老人每天的平均户外“活动时间”,从辖区住户的离退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外“活动时间”(单位:
小时),活动时间按照、、…、从少到多分成9组,制成样本的频率分布直方图如图所示.
(1)求图中的值;
(2)估计该社区住户中离退休老人每天的平均户外“活动时间”的中位数;
(3)在、这两组中采用分层抽样抽取7人,再从这7人中随机抽取2人,求抽取的两人恰好都在同一个组的概率.
20.【2018福建三明】近年来随着我国在教育利研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内确实力企业纷纷进行海外布局,第二轮企业出海潮到来,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派上作的态度,按分层抽样的方式从70后利80后的员工中随机调查了100位,得到数据如下表:
愿意被外派
不愿意被外派
合计
70后
40
80后
60
100
(1)根据凋查的数据,是否有的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加,70后的员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
0.15
0.10
0.05
0.025
0.010
0.005
2.072
2.706
3.841
5.024
6.635
7.879
(参考公式:
,其中)
21.【2018河南郑州】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:
男生测试情况:
抽样情况
病残免试
不合格
合格
良好
优秀
人数
5
10
15
47
女生测试情况
2
3
(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;
(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?
男性
女性
总计
体育达人
非体育达人
临界值表:
(,其中)
22.【2018四川广元】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:
分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
(2)在[0,10),[40,50)这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.
23.【2018广西桂梧中学】“双十一”期间,某淘宝店主对其商品的上架时间(分钟)和销售量(件)的关系作了统计,得到如下数据:
经计算:
,,,.
(1)从满足的数据中任取两个,求所得两个数据都满足的概率;
(2)该店主通过作散点图,发现上架时间与销售量线性相关,请你帮助店主求出上架时间与销售量的线性回归方程(保留三位小数),并预测商品上架1000分钟时的销售量.
23.【2018四省名校】在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量,(元)表示利润.
(1)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;
(2)估