半导体物理知识整理Word格式.docx

上传人:b****3 文档编号:14485529 上传时间:2022-10-23 格式:DOCX 页数:10 大小:25.84KB
下载 相关 举报
半导体物理知识整理Word格式.docx_第1页
第1页 / 共10页
半导体物理知识整理Word格式.docx_第2页
第2页 / 共10页
半导体物理知识整理Word格式.docx_第3页
第3页 / 共10页
半导体物理知识整理Word格式.docx_第4页
第4页 / 共10页
半导体物理知识整理Word格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

半导体物理知识整理Word格式.docx

《半导体物理知识整理Word格式.docx》由会员分享,可在线阅读,更多相关《半导体物理知识整理Word格式.docx(10页珍藏版)》请在冰豆网上搜索。

半导体物理知识整理Word格式.docx

金属中的电子,只能在导带上传输,而半导体中的载流子:

电子和空穴,却能在两个通道:

价带和导带上分别传输信息

2.什么是空穴?

它有哪些基本特征?

以硅为例,对照能带结构和价键结构图理解空穴概念。

当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|mn*|、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴

3.半导体材料的一般特性。

电阻率介于导体与绝缘体之间

对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;

适当波长的光照可以改变半导体的导电能力)

性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力)

4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?

什么情况下费米分布函数可以转化为玻耳兹曼函数。

为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述。

费米分布受到了泡利不相容原理的限制,而在E-EF>

>

k0T的条件下,泡利原理失去作用,可以化简为玻尔兹曼分布。

在半导体中,最常遇到的情况是费米能级EF位于禁带内,而且与导带底和价带顶的距离远大于k0T,所以,对导带中的所有量子态来说,被电子占据的概率一般都满足f(E)<

<

1,故半导体导带中的电子分布可以用电子的玻尔兹曼分布函数描写

5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。

水平:

热平衡

倾斜:

费米能级朝哪边下倾斜,电子就往哪个方向流动,而电流的流动就是相反的方向,倾斜越大,电子流动程度越强,电流越大

分裂:

掺杂(准费米能级)

6.何谓准费米能级?

它和费米能级的区别是什么?

当外界有很大能量注入,或者很多载流子注入时,载流子的数量会发生突然的变化,不再遵循费米-狄拉克分布,费米能级的调控暂时失灵

当半导体的平衡态被破坏,而且存在非平衡载流子时,分别就价带和导带中的电子讲,他们各自基本上处于平衡态,而导带和价带之间处于不平衡态,因而,费米能级和统计分布函数对导带和价带各自仍然是适用的,它们都是局部费米能级,成为“准费米能级”

电子和空穴的准费米能级的差反映了半导体偏离平衡态的程度。

当电子的准费米能级和空穴的准费米能级相重合时,形成统一费米能级,系统处于热平衡状态

7.比较Si,Ge,GaAs能带结构的特点,并说明各自在不同器件中应用的优势。

硅的价带顶在中心点k=0处,导带底不在中心点k=0处,而是沿[100]轴,位于布里渊区中心至边缘0.85倍处

锗的价带顶在中心点k=0处,导带底也不在中心点k=0处,而是沿[111]轴,导带极小值正好位于布里渊区边界

砷化镓的价带顶在中心点k=0处,,导带能量的最小值位于k=0处,在[111]和[100]方向布里渊区边界L和X处还各有一个极小值。

砷化镓的导带底和价带顶对应的k值相同

硅和锗是间接带隙半导体,砷化镓是直接带隙半导体

砷化镓用于制备发光器件时,其内部量子效率较高

8.重空穴,轻空穴的概念。

硅、锗、砷化镓存在极大值相重合的两个价带

重空穴:

外能带曲率小,对应的有效质量大

轻空穴:

内能带曲率大,对应的有效质量小

9.有效质量、状态密度有效质量、电导有效质量概念。

10.什么是本征半导体和本征激发?

本征半导体:

没有杂质和缺陷的纯净的半导体

本征激发:

0K时,电子从价带激发到导带,同时价带中产生空穴

本征半导体的费米能级Ei基本位于禁带中央

11.何谓施主杂质和受主杂质?

浅能级杂质与深能级杂质?

各自的作用。

V族元素在硅、锗中电离时能够释放电子而产生导电电子并形成正电中心,称此类杂质为施主杂质或n型杂质被施主杂质束缚的电子的能量状态称为施主能级,记为ED。

施主杂质电离后成为不可移动的带正电的施主离子,同时向导带提供电子,使半导体成为电子导电的n型半导体

III族元素在硅、锗中电离时能够接受电子而产生导电空穴并形成负电中心,称此类杂质为受主杂质或p型杂质被受主杂质束缚的空穴的能量状态称为受主能级,记为EA。

受主杂质电离后成为不可移动的带负电的受主离子,同时向价带提供空穴,使半导体成为空穴导电的p型半导体

电离能小的杂质称为浅能级杂质。

施主能级靠近导带底,受主能级靠近价带顶。

室温下,掺杂浓度不很高的情况下,浅能级杂质几乎可以全部电离。

浅能级杂质电离能比禁带宽度小得多,杂质种类对半导体的导电性影响很大

优点:

室温下有很低的电离能,可以进行追加式的浓度控制

非III、V族元素在硅、锗的禁带中产生的施主能级距离导带底较远和受主能级距离价带顶较远,形成深能级,称为深能级杂质。

有些深能级杂质会发生多次电离,在禁带中产生对应的多个能级,有的深能级杂质既能引入施主能级,又能引入受主能级

特点:

不容易电离,对载流子浓度影响不大;

深能级杂质能够产生多次电离,每次电离均对应一个能级,甚至既产生施主能级也产生受主能级;

深能级杂质的复合作用比浅能级杂质强,可作为复合中心

12.何谓杂质补偿?

举例说明有何实际应用。

半导体中存在施主杂质和受主杂质时,它们的共同作用会使载流子减少,这种作用称为杂质补偿

在制造半导体器件的过程中,通过采用杂质补偿的方法来改变半导体某个区域的导电类型或电阻率

利用杂质的补偿作用,根据扩散或离子注入的方法来改变半导体某一区域的导电类型,制成各种器件。

例如:

在一块n型半导体基片的一侧掺入较高浓度的受主杂质,由于杂质的补偿作用,该区就成为p型半导体

13.金原子的带电状态与浅能级杂质的关系?

14.画出(a)本征半导体、(b)n型半导体、(c)p型半导体的能带图,标出费米能级、导带底、价带顶、施主能级和受主能级的位置

15.重掺杂的半导体其能带结构会发生何种变化?

能带图中,杂质能级就不再是一根根分立的曲线,而是一条具有一定宽度的杂质能带。

如果掺杂浓度过高,杂质能带会进入导带或价带,与导带或价带相连形成新的简并能带,使半导体变成简并半导体,能带状态密度变化,禁带宽度变窄

16.何谓非简并半导体、简并半导体?

简并化条件?

当费米能级距导带和价带位置都较远时,导带/价带上的电子/空穴数量很少,因此不太容易出现多个能态电子处于同一能级的简并情况,利用玻尔兹曼分布近似费米分布,称这种半导体为非简并半导体

繁殖如果费米能级靠近导带或价带,则会出现电子/空穴拥挤,发生载流子煎饼华,被迫使用泡利不相容原理对电子/空穴加以限制,因此不可用玻尔兹曼分布近似费米分布,称为简并半导体

EC-EF>

2k0T非简并

0<

EC-EF<

2k0T弱简并

EC-EF<

0简并

17.写出热平衡时,非简并半导体的表达式,n0、p0用ni表示的表达式。

18.n型、p型(包括同时含有施主和受主杂质)半导体的电中性方程。

19.解释载流子浓度随温度的变化关系,并说明为什么高温下半导体器件无法工作。

一定的半导体材料,其本征载流子浓度随温度T的升高而迅速增加

一般半导体器件中,载流子主要来源于杂质电离,本征激发忽略不计,而当温度足够高,本征激发占主要地位,器件就不能正常工作(极限工作温度)

20.温度、杂质浓度对费米能级位置的影响。

 

21.热平衡态、非平衡态、稳态概念.

22.非平衡状态下载流子浓度表达式(用准费米能级表示),比较平衡与非平衡下电子浓度n和空穴浓度p的乘积。

载流子的各种运动

1.何谓直接复合?

间接复合?

载流子的产生和复合:

电子和空穴增加和消失的过程

直接复合:

导带电子与价带空穴直接复合

间接复合:

通过位于禁带中的杂质或缺陷能级的中间过渡

表面复合:

在半导体表面发生的复合过程

2.推导直接复合的非平衡载流子寿命公式,从直接复合的非平衡载流子寿命公式出发说明小注入条件下,寿命为定值。

3.了解间接复合的净复合率公式中各参量代表的意义,并从间接复合的净复合率公式出发说明深能级是最有效的复合中心。

Et=Ei时,净复合率U取最大值,偏离越多,U越小。

这意味着复合中心能级的位置越靠近禁带中央,复合中心的复合作用越强。

当复合中心偏离禁带中央时,若靠近导带一侧,俘获电子的能力会增强,但是对空穴的俘获能力却下降了,这样使得总的复合作用减弱,反之也然。

当复合中心能级处禁带中央时,复合中心的复合作用最强,这是非平衡载流子的寿命达到极小值。

因此,通过掺入深能级杂质来降低非平衡载流子寿命

4.已知间接复合的非平衡载流子寿命公式的一般形式,会化简不同费米能级位置下的寿命公式。

5.半导体的主要散射机制?

温度对它们的影响,原因?

散射是指运动粒子受到力场(或势场)的作用时运动状态发生变化的一种现象

晶格振动散射:

温度越高,晶格振动越强,晶格散射越强

电离杂质散射:

温度越高,载流子速度越高,越容易掠过杂质中心,散射越弱

对于杂质含量较多的半导体,温度很低时,晶格振动产生的声子数很少,因此电离杂质散射起主要作用,随着温度的升高,晶格振动产生的声子越来越多,晶格振动散射将呈现主导作用

载流子的散射决定了载流子的平均自由时间,从而决定了载流子迁移率和电导率

载流子的复合决定了非平衡载流子的寿命

6.何谓漂移运动?

外加一定电场后,就会使载流子在电场方向的速度分量比其他方向大,从而呈现定向运动的态势,产生电流。

由电场引起的载流子的定向运动称为漂移运动,定向运动的速度成为漂移速度,由此产生的电流称为漂移电流

7.迁移率的定义、量纲。

影响迁移率的因素。

在弱电场范围内,平均漂移速度的大小与电场强度成正比,比例系数用μ表示,称为迁移率,表示单位场强下电子的平均漂移速度,单位是m2/V*s,习惯上只取正值。

迁移率的大小反映了载流子迁移的难易程度

有效质量,散射。

载流子本身的有效质量越大,移动就越困难;

载流子运动时遭受的散射越频繁,移动也会越困难

8.解释迁移率与杂质浓度、温度的关系。

杂质浓度升高,电离杂质散射上升,迁移率下降

掺杂很轻,忽略电离杂质散射

温度↑,晶格振动散射↑,μ↓

一般情况下:

低温:

电离杂质散射为主

温度↑,电离杂质散射↓,μ↑

高温:

晶格振动散射为主

随温度升高,晶格振动散射增强,载流子的平均自由时间变小,由此迁移率下降

对于掺杂半导体,两种散射机制都必须考虑,温度很低时,晶格振动微弱,这是电离杂质散射占主导地位,电离杂质散射随温度升高反而减小,因此迁移率随温度升高增大的。

但是,当温度继续上升后,晶格振动越来越强烈,使得晶格振动散射逐渐占据主导地位

9.解释电阻率随温度的变化关系。

电阻率随温度上升而下降,这是因为金属中载流子的迁移率只受到晶格振动散射影响,而半导体的迁移率同时受到散射和载流子浓度的变化

轻掺杂时,迁移率约为常数,n=ND,p=NA,电阻率与杂质浓度成简单反比关系

非轻掺杂时,杂质浓度增高时,曲线严重偏离直线。

原因:

杂质浓度升高,迁移率下降,电阻率上升;

未完全电离,杂质浓度上升,n升高,电阻率下降

10.强电场下Si、Ge和GaAs的漂移速度的变化规律,并解释之。

硅和锗的漂移速度随电场强度增大成亚线性增加,最终达到一饱和值,这就是强电场效应

砷化镓随电场增强而增大到一个极大值后,漂移速度反而下降

11.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1