《相似三角形》复习题及答案Word格式文档下载.doc
《《相似三角形》复习题及答案Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《《相似三角形》复习题及答案Word格式文档下载.doc(4页珍藏版)》请在冰豆网上搜索。
A.△ABD∽△BCD B.△ABC∽△BDC
C.△ABC∽△ABD D.不存在
(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是()
A.1∶3∶5∶7 B.1∶2∶3∶4 C.1∶2∶4∶5 D.1∶2∶3∶5
(5)下列命题中,真命题是()
A.有一个角为30°
的两个等腰三角形相似B.邻边之比都等于2的两个平行四边形相似
C.底角为40°
的两个等腰梯形相似D.有一个角为120°
的两个等腰三角形相似
(6)直角梯形ABCD中,AD为上底,∠D=Rt∠,AC⊥AB,AD=4,BC=9,则AC等于()
A.5 B.6 C.7 D.8
(7)已知CD为Rt△ABC斜边上的中线,E、F分别是AC、BC中点,则CD与EF关系是()
A.EF>CD B.EF=CD C.EF<CD D.不能确定
(8)下列命题①相似三角形一定不是全等三角形②相似三角形对应中线的比等于对应角平分线的比;
③边数相同,对应角相等的两个多边形相似;
④O是△ABC内任意一点.OA、OB、OC的中点连成的三角形△A′B′C′∽△ABC。
其中正确的个数是()
A.0个 B.1个 C.2个 D.3个
(9)D为△ABC的AB边上一点,若△ACD∽△ABC,应满足条件有下列三种可能①∠ACD=∠B②∠ADC=∠ACB③AC2=AB·
AD,其中正确的个数是()
A.0个 B.1个 C.2个 D.3个
(10)下列命题错误的是()
A.如果一个菱形的一个角等于另一个菱形的一个角,则它们相似
B.如果一个矩形的两邻边之比等于另一个矩形的两邻边之比,则它们相似
C.如果两个平行四边形相似,则它们对应高的比等于相似比
D.对应角相等,对应边成比例的两个多边形相似
二、填空题
(1)比例的基本性质是________________________________________
(2)若线段a=3cm,b=12cm,a、b的比例中项c=________,a、b、c的第四比例线段d=________
(3)如下图,EF∥BC,若AE∶EB=2∶1,EM=1,MF=2,则AM∶AN=________,BN∶NC=________
(4)有同一三角形地块的甲乙两地图,比例尺分别为1∶200和1∶500,则甲地图与乙地图的相似比为________,面积比为________
(5)若两个相似三角形的面积之比为1∶2,则它们对应边上的高之比为________
(6)已知CD是Rt△ABC斜边AB上的高,则CD2=________
(7)把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的____倍,周长扩大为原来的______倍.
(8)Rt△ABC中,∠C=90°
CD为斜边上的高。
若AC∶AB=4∶9,则AD∶BD=________
(9)把62cm的线段分成三部分,它们的比为3∶2∶5,则最长段为________
(10)若D为△ABC边BC之中点,E为AD的中点,BE交AC于F,则AF∶FC=________
三、.已知平行四边形ABCD中,AE∶EB=1∶2,求△AEF与△CDF的周长比,如果S△AEF=6cm2,求S△CDF.
四.如下图,已知在△ABC中,AD平分∠BAC,EM是AD的中垂线,交BC延长线于E.求证:
DE2=BE·
CE.
五、已知如图,在平行四边形ABCD中,DE=BF,求证:
=.
六、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E,求证:
AE∶ED=2AF∶FB.
七、如果四边形ABCD的对角线交于O,过O作直线OG∥AB交BC于E,交AD于F,交CD的延长线于G,求证:
OG2=GE·
GF.
八、如下图,在△ABC中,D、E分别为BC的三等分点,CM为AB上的中线,CM分别交AE、AD于F、G,则CF∶FG∶GM=5∶3∶2
九、如下图,△ABC中,AD∥BC,连结CD交AB于E,且AE∶EB=1∶3,过E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.
十、已知:
线段AB,分点C将AB分成3∶11两组,分点D将AB分成5∶9两段,且CD=4cm,求AB的长.
十一、下图中,E为平行四边形ABCD的对角线AC上一点,AE∶EC=1∶3,BE的延长线交CD的延长线于G,交AD于F,求证:
BF∶FG=1∶2.
参考答案
一..
(1)C
(2)A(3)B(4)A(5)D(6)B(7)B(8)C(9)D(10)D
二.
(1)略
(2)6,24(3)2∶3,1∶2(4)5∶2;
25∶4(5)∶2(6)AD·
BD(7)100,10(8)16∶65(9)31(10)1∶2
三.1∶3,S△CDF=54cm2
四.提示:
连接AE,则AE=DE,证△AEC∽△BEA
五.略六.略
七.提示:
过E点作EH∥BD交CD于H,连接HO,由=得HO∥AD,这时=,由OD∥EH,得=,即可证
八、略
九.提示:
连接MD,证F为MC中点,MD=2EF,AE=2MD,∴CF∶GF∶GM=5∶3∶2
十.S△BCE=18cm2S△AEF=1.5cm211.28cm
十一略。
十二.△AEF∽△CEB,AF∶BC=AF∶AD=1∶3,则AF∶FD=1∶2,又△ABF∽△GDF,则BF∶FG=1∶2
第4页