TSP问题求解实验报告Word下载.doc

上传人:b****2 文档编号:14454210 上传时间:2022-10-22 格式:DOC 页数:13 大小:272KB
下载 相关 举报
TSP问题求解实验报告Word下载.doc_第1页
第1页 / 共13页
TSP问题求解实验报告Word下载.doc_第2页
第2页 / 共13页
TSP问题求解实验报告Word下载.doc_第3页
第3页 / 共13页
TSP问题求解实验报告Word下载.doc_第4页
第4页 / 共13页
TSP问题求解实验报告Word下载.doc_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

TSP问题求解实验报告Word下载.doc

《TSP问题求解实验报告Word下载.doc》由会员分享,可在线阅读,更多相关《TSP问题求解实验报告Word下载.doc(13页珍藏版)》请在冰豆网上搜索。

TSP问题求解实验报告Word下载.doc

Ф——选择算子,SGA使用比例算子;

Г——交叉算子,SGA使用单点交叉算子;

Ψ——变异算子,SGA使用基本位变异算子;

Т——算法终止条件,一般终止进化代数为100—500;

问题的表示

对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。

用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。

路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。

它在编码,解码,存储过程中相对容易理解和实现。

例如:

旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(517894623)

(三)实验内容

N>

=8。

随即生成N个城市间的连接矩阵。

指定起始城市。

给出每一代的最优路线和总路线长度。

以代数T作为结束条件,T>

=50。

(四)实验代码

#include"

stdafx.h"

#include<

stdio.h>

string.h>

stdlib.h>

math.h>

time.h>

#definecities10//城市的个数

#defineMAXX100//迭代次数

#definepc0.8//交配概率

#definepm0.05//变异概率

#definenum10//种群的大小

intbestsolution;

//最优染色体

intdistance[cities][cities];

//城市之间的距离

structgroup//染色体的结构

{

intcity[cities];

//城市的顺序

intadapt;

//适应度

doublep;

//在种群中的幸存概率

}group[num],grouptemp[num];

//随机产生cities个城市之间的相互距离

voidinit()

inti,j;

memset(distance,0,sizeof(distance));

srand((unsigned)time(NULL));

for(i=0;

i<

cities;

i++)

{

for(j=i+1;

j<

j++)

{

distance[i][j]=rand()%100;

distance[j][i]=distance[i][j];

}

}

//打印距离矩阵

printf("

城市的距离矩阵如下\n"

);

for(j=0;

printf("

%4d"

distance[i][j]);

printf("

\n"

}

//随机产生初试群

voidgroupproduce()

inti,j,t,k,flag;

num;

i++)//初始化

for(j=0;

group[i].city[j]=-1;

//产生10个不相同的数字

t=rand()%cities;

flag=1;

for(k=0;

k<

j;

k++)

{

if(group[i].city[k]==t)

{

flag=0;

break;

}

}

if(flag)

group[i].city[j]=t;

j++;

//打印种群基因

初始的种群\n"

group[i].city[j]);

//评价函数,找出最优染色体

voidpingjia()

intn1,n2;

intsumdistance,biggestsum=0;

doublebiggestp=0;

sumdistance=0;

for(j=1;

n1=group[i].city[j-1];

n2=group[i].city[j];

sumdistance+=distance[n1][n2];

group[i].adapt=sumdistance;

//每条染色体的路径总和

biggestsum+=sumdistance;

//种群的总路径

//计算染色体的幸存能力,路劲越短生存概率越大

group[i].p=1-(double)group[i].adapt/(double)biggestsum;

biggestp+=group[i].p;

group[i].p=group[i].p/biggestp;

//在种群中的幸存概率,总和为1

//求最佳路劲

bestsolution=0;

if(group[i].p>

group[bestsolution].p)

bestsolution=i;

//打印适应度

染色体%d的路径之和与生存概率分别为%4d%.4f\n"

i,group[i].adapt,group[i].p);

当前种群的最优染色体是%d号染色体\n"

bestsolution);

//选择

voidxuanze()

inti,j,temp;

doublegradient[num];

//梯度概率

doublexuanze[num];

//选择染色体的随机概率

intxuan[num];

//选择了的染色体

//初始化梯度概率

gradient[i]=0.0;

xuanze[i]=0.0;

gradient[0]=group[0].p;

for(i=1;

gradient[i]=gradient[i-1]+group[i].p;

//随机产生染色体的存活概率

xuanze[i]=(rand()%100);

xuanze[i]/=100;

//选择能生存的染色体

if(xuanze[i]<

gradient[j])

xuan[i]=j;

//第i个位置存放第j个染色体

break;

//拷贝种群

grouptemp[i].adapt=group[i].adapt;

grouptemp[i].p=group[i].p;

grouptemp[i].city[j]=group[i].city[j];

//数据更新

temp=xuan[i];

group[i].adapt=grouptemp[temp].adapt;

group[i].p=grouptemp[temp].p;

group[i].city[j]=grouptemp[temp].city[j];

//用于测试

<

------------------------------->

for(i=0;

i<

i++)

for(j=0;

j<

j++)

group[i].city[j]);

i,group[i].adapt,group[i].p);

//交配,对每个染色体产生交配概率,满足交配率的染色体进行交配

voidjiaopei()

inti,j,k,kk;

intt;

//参与交配的染色体的个数

intpoint1,point2,temp;

//交配断点

intpointnum;

inttemp1,temp2;

intmap1[cities],map2[cities];

doublejiaopeip[num];

//染色体的交配概率

intjiaopeiflag[num];

//染色体的可交配情况

i++)//初始化

jiaopeiflag[i]=0;

//随机产生交配概率

srand((unsigned)time(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 机械仪表

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1