常微分方程的实际应用Word文档下载推荐.docx
《常微分方程的实际应用Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《常微分方程的实际应用Word文档下载推荐.docx(17页珍藏版)》请在冰豆网上搜索。
例如,几何学、机械运动、电磁振荡就是常微分方程理论的丰富的源泉之一,常微分方程也是解决实际问题不可或缺的武器。
一、常微分方程在几何学的应用
在几何应用问题中,列的方程常常是含有变限定积分的方程。
在求解时要化为相应的微分方程或微分方程初值问题。
但凡能用定积分计算的量,一定分布在某个区间(比方)上,并且对于该区间具有可加性,曲边梯形的面积与区间有关,当把分成个局部区间时,那么所求量也相应地分成个局部量,而就等于所有这些局部之和,即,这时我们就称面积对区间具有可加性,几何中的面积、弧长,曲线方程等都具有这种特性。
在求解微分方程的应用问题时,列出方程是关键性的一步,一定要逐字逐句地仔细阅读题目,根据题目的要求确定未知函数和自变量,然后利用题设中指出的(或包含的)相等关系列出方程,应用问题常常是初值问题。
因而,要从题设中确定未知函数满足的初始条件。
常微分方程在解决几何问题的过程中通常采用数形结合,到达简易直观的效果。
利用表示曲线上点处的切线斜率或表示曲线上点的法线斜率以及表示由曲线,直线,轴所围图形的面积等方面的意义,列方程。
解方程,在求解过程中一定要对常微分方程的解法熟悉于心,才能得心应手。
首先要审视方程,判断方程类型,属于一阶微分方程还是可降阶微分方程或高阶微分方程等等。
根据不同类型,确定解题方案。
下面就让我们结合具体例题来体会常微分方程在解决几何问题的应用。
例1[2]、设是第一象限内连接点的一段连续曲线,为该曲线上任意一点,点为在轴上的投影。
为坐标原点,假设梯形的面积与曲边三角形的面积之和为,求的表达式。
解:
根据题意有:
且,
将上式两边对求导数,
得
当时,可化为一阶线性微分方程:
方程两边同除,
即得
积分可得
于是,方程通解为
把代入通解,可确定常数
故所求函数的表达式为:
例2[2]、在上半平面求一条向上凹的曲线,其任一点处的曲率等于此曲线在该点的法线段长度的倒数,(Q是法线与轴的交点),且曲线在点处切线与轴平行。
见图,所求曲线为,于是其在点处的曲率为:
(∵曲线为凹的,∴)
曲线在点处的法线方程:
它与轴的交点的坐标,
于是,
由题设,
即
——这是不显含的方程
初始条件为,,
令,于是方程变为
,
代入,得
积分得
故所求曲线为:
,即
例3[3]、曲线过点,如果把曲线上任一点处的切线与轴的交点记作,那么以为直径所做的圆都经过点,求此曲线方程。
见图
所求曲线设为
于是切线方程为
切线与轴的交点的坐标为
设点为切线段的中点,坐标为
∵圆经过点
∴
于是得方程①
令,那么方程①
②
(1)
(2)令为②的解,代入并整理,得
故②的通解为:
即方程的通解为,
代入初值,得
故所求曲线为
例4[1]、在制造探照灯的反射镜面时,总是要求将点光源射出的光线平行地反射出去,以保证探照灯有良好的方向性,试求反射镜面的几何形状。
取光源所在处为坐标原点,而轴平行于光的反射方向,(见图)。
设所求曲面由曲线
①
绕轴旋转而成,那么求反射镜面问题归结为求平面上的曲线的问题。
过曲线上任一点作切线
那么由反射定律:
入射角等于反射角,容易推知
从而
注意到
及
就得到函数所满足的微分方程式
这是齐次方程。
设,将它化为变量别离方程求解
得为任意常数
故反射镜面的形状为旋转抛物面
二、常微分方程在机械振动中的应用
常微分方程与物理联系甚为广泛,下面我们就一起来看一下常微分方程在机械振动中的应用,常微分方程解决力学问题需要:
建立坐标系,对所研究物体进行受力分析;
根据牛顿第二定律,列方程;
解方程。
下面,让我们从实例中体会常微分方程在力学中的作用。
例1[2]:
一个质量为的船以速度行驶,在时,动力关闭,假设水的阻力正比于,其中为一常数,为瞬时速度,求速度与滑行距离的函数关系。
船所受的净力=向前推力-水的阻力=,
加速度=速度对时间的导数,即,
于是,由题设有
现在要求的不是速度与时间的关系,而是速度与距离的关系,设距离为,于是,上述方程可化为:
(※)
当时,两边积分,得
把代入上式,得
故
当时,(※),
积分得,
将初值代入,得
例2[2]、两个质量相同的重物挂于弹簧下端,其中一个坠落,求另一个重物的运动规律,弹簧挂一个重物伸长为。
如下图,建立坐标系设弹簧自由状态时长度为,取处(即挂一重物时弹簧的长度)为坐标原点,取轴铅直向下,设在时刻,重物在处,由虎克定律知,此时弹性恢复力为为弹性系数,负号“—〞是因为弹性恢复力与位移反向,由牛顿第二定律有:
∵挂两重物时,弹簧伸长,由虎克定律有:
∴方程,
其特征方程:
于是方程通解为
把初始条件代入以上两式
∴所求重物的运动规律为
例3[1]数学摆是系于一根长度为的线上而质量为的质点在重力作用下,它在垂直于地面的平面上沿圆周动运。
如下图,试确定摆的运动方程。
解:
设取反时针运动的方向作为计算摆与铅垂线所成的角的正方向,质点沿圆周的切向速度可以表为作用于质点的重力将摆拉回平衡位置。
把重力分解为两个分量和,第一个分量沿着半径的方向,与线的拉力相抵消,它不会引起质点的速度的数值改变,因为总是使质点向着平衡位置的方向运动,即当角为正时,向减小的方向运动,当角为负时,向增大的方向运动,所以的数值等于,因
此,摆的运动方程是,即。
(1)如果只研究摆的微小振动,即当比拟小时的情况,我们可以取的近似值代入上式,这样就得到微小振动时摆的运动方程:
(2)如果我们假设摆是在一个粘性的介质中摆动,那么,沿摆的运动方向就存在一个与速度成比例的阻力,假设阻力系数为,那么摆动方程为。
(3)如果沿摆的运动方向恒有一个外力作用于它,这时摆的运动称为强迫微小振动,其方程为:
。
当要确定摆的某一个特定运动时,我们应给出摆的初始状态:
当时,,。
这里代表摆的初始位置,代表初始角速度。
例4[3]:
生产实践中很多机械问题都归结为弹性振动问题,下面便是一个弹簧振动的典型例子。
设有弹性系数而自然长度为的弹簧竖着悬挂着。
它的上端固定,下端悬挂,一个质量为的物体,物体受到垂直干扰力,求物体的运动规律所满足的微分方程。
如下图,取通过悬挂点的直线为轴,向下记为正方向,原点取在系统平衡位置,为确定物体运动规律,先分析它的位置,处的受力情况。
(1)弹簧弹性力,依虎克定律,其中为弹簧在物体重力作用下的伸长量。
(2)物体所受重力
(3)介质阻力与物体运动速度成正比,与运动方向相反,
其中为常数,称为阻尼系数。
(4)重力干扰力
因此,这时物体所受合外力
再由牛二定律,得方程:
由于系统的平衡位置处,弹性力与重力平衡,故有
于是上述方程写成
假设记,
那么①可写成
这就是该物体在外力作用下运动规律。
所满足的微分方程
假设物体振动过程中,未受外力干扰,即,那么微分方程
三、常微分方程在电磁振荡中的应用
建立起实际问题的数学模型一般是比拟困难的,因为这需要对与问题有关的自然规律有一个清晰的了解,如前面所求的力学问题就要对牛二定律有清楚的认识,同时也需要有一定的数学知识,为了要建立起实际问题的数学模型,一定要学习有关的自然科学和工程技术的专业知识,微分方程往往可以看作是各种不同物理现象的数学模型,我们在建立微分方程的时候,只能考虑影响这个物理现象的一些主要因素,而把其它一些次要因素忽略掉,如果确实考虑到了那些最主要的因素,那么,我们所得到的微分方程,它的解和所考虑的物理现象就是比拟接近的,这时,我们得到的数学模型是有用的,否那么,我们还应考虑其它一些因素,以便建立起更为合理的数学模型,为了解决热电学问题,需要了解其中的一些根本规律,如下面将用到牛顿冷却定律,其内容为热量总是从物体中温度高的向温度低的物体传导;
在一定温度范围内,一个物体的温度变化速度与这一物体的温度和其所在介质温度差值成比例,等等,我们将在实例中一一解答。
常微分方程解决电磁振荡问题通常建立起电热学问题的数学模型,也就是反映这个实际问题的微分方程。
求解这个微分方程。
用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便到达能动地改造世界,解决实际问题的目的。
接下来,就让我们从实例中体会常微分方程在电热方面的应用。
例1[1].电路,如图,它包含电感,电阻和电源,设时,电路中没有电流,我们要求建立:
当开关闭合后,电流应该满足的微分方程,假设都是常数。
为了建立电路的微分方程,我们引用关于电路的基尔霍夫第二定律:
在闭合回路中,所有支路上的电压的代数和等于零。
注意到经过电阻的电压降是,而经过电感的电压降是,由基尔霍夫第二定律得到。
求出的应满足条件:
当时,,如果假定在时,,电源突然短路,因而变为零,此后亦保持为零,那么电流满足方程。
,及条件时,
例2[1]电路,如下