初二上动点问题Word格式.docx

上传人:b****1 文档编号:14319304 上传时间:2022-10-22 格式:DOCX 页数:24 大小:348.74KB
下载 相关 举报
初二上动点问题Word格式.docx_第1页
第1页 / 共24页
初二上动点问题Word格式.docx_第2页
第2页 / 共24页
初二上动点问题Word格式.docx_第3页
第3页 / 共24页
初二上动点问题Word格式.docx_第4页
第4页 / 共24页
初二上动点问题Word格式.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

初二上动点问题Word格式.docx

《初二上动点问题Word格式.docx》由会员分享,可在线阅读,更多相关《初二上动点问题Word格式.docx(24页珍藏版)》请在冰豆网上搜索。

初二上动点问题Word格式.docx

(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°

的A处,舰艇乙在指挥中心南偏东70°

的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°

的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°

,试求此时两舰艇之间的距离.

4.(12分)在等腰△ABC中,AB=AC=2,∠BAC=120°

AD⊥BC于D,点O、点P分别在射线AD、BA上的运动,且保证∠OCP=60°

,连接OP.

(1)当点O运动到D点时,如图一,此时AP=______,△OPC是什么三角形。

(2)当点O在射线AD其它地方运动时,△OPC还满足

(1)的结论吗?

请用利用图二说明理由。

(3)令AO=x,AP=y,请直接写出y关于x的函数表达式,以及x的取值范围。

图一图二

5.探究题

如图,点O是等边△ABC内一点,∠AOB﹦1100,∠BOC﹦a,将△BOC绕点C按顺时钟方向旋转60O得△ADC,连接OD.

(1)求证:

△COD是等边三角形;

(2)当a﹦150O时,试判断△AOD的形状,并说明理由;

(3)探究:

当仅为多少度时,△AOD是等腰三角形?

6.如图,在△ABC中,∠ACB为锐角,点D为BC边上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.

(1)如图1,若AB=AC,∠BAC=90°

,当点D在线段BC上时(不与点B重合),

证明:

△ACF≌△ABD

(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;

(3)如图3,若AB≠AC,∠BAC≠90°

,∠BCA=45°

,点D在线段BC上运动(不与点B重合),试探究CF与BD位置关系.

7.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°

,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.

(1)如图②,当∠C≠90°

,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?

请写出你的猜想并证明;

(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?

请写出你的猜想,并对你的猜想给予证明.

8.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.

(1)填空:

∠CAM=__________度;

(2)若点D在线段AM上时,求证:

△ADC≌△BEC;

(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?

并说明理由.

9.

(1)如图

(1),已知:

在△ABC中,∠BAC=90°

,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明①:

△ABD≌△ACE②DE=BD+CE

(2)如图

(2),将

(1)中的条件改为:

在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=

其中

为任意锐角或钝角.请问结论DE=BD+CE是否成立?

如成立,请你给出证明;

若不成立,请说明理由.

10.如图①,等腰直角三角形

的顶点

的坐标为

,直角顶点

在第四象限,线段AC与x轴交于点D.将线段DC绕点D逆时针旋转90°

至DE.

(1)直接写出点B、D、E的坐标并求出直线DE的解析式.

(2)如图②,点P以每秒1个单位的速度沿线段AC从点A运动到点C的过程中,过点P作与x轴平行的直线PG,交直线DE于点G,求与△DPG的面积S与运动时间t的函数关系式,并求出自变量t的取值范围.

(3)如图③,设点F为直线DE上的点,连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FE以每秒

个单位的速度运动到E后停止.当点F的坐标是多少时,是否存在点M在整个运动过程中用时最少?

若存在,请求出点F的坐标;

若不存在,请说明理由.

参考答案

1.

(1)

(2)t=83;

(3)当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.

【解析】

(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;

(2)设出发t秒后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;

(3)当点Q在CA上运动上,能使△BCQ成为等腰三角形的运动时间有三种情况:

①当CQ=BQ时(图1)则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;

②当CQ=BC时(图2),则BC+CQ=12,易求得t;

③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求得BE、CE,即可得出t.

解:

(1)BQ=2×

2=4cm,BP=AB−AP=8−2×

1=6cm,

∵∠B=90°

PQ=

(2)BQ=2t,BP=8−t,2t=8−t,解得:

t=83;

(3)①当CQ=BQ时(图1),则∠C=∠CBQ,

∵∠ABC=90°

,∴∠CBQ+∠ABQ=90°

,∠A+∠C=90°

∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷

2=5.5秒.

②当CQ=BC时(如图2),

则BC+CQ=12∴t=12÷

2=6秒

③当BC=BQ时(如图3),过B点作BE⊥AC于点E,

则BE=

所以CE=BC2−BE2,故CQ=2CE=7.2,所以BC+CQ=13.2,

∴t=13.2÷

2=6.6秒.

由上可知,当t为5.5秒或6秒或6.6秒时,

△BCQ为等腰三角形.

“点睛”本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.

2.

(1)5

(2)2或8;

(3)2或10.

【解析】试题分析:

(1)运用勾股定理直接求出;

(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;

(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.

试题解析:

(1)∵在△ABC中,AB=AC,∠BAC=90°

∴2AB2=BC2,∴AB=

=5

cm;

(2)过A作AF⊥BC交BC于点F,

则AF=

BC=5cm,

∵S△ABD=15cm2,∴AF×

BD=30,∴BD=6cm.

若D在B点右侧,则CD=4cm,t=2s;

若D在B点左侧,则CD=16cm,t=8s.

(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动6秒时,△ABD≌△ACE.

理由如下:

(说理过程简要说明即可)

①当E在射线CM上时,D必在CB上,则需BD=CE.

∵CE=2t,BD=10﹣3t

∴2t=10﹣3t

∴t=2

在△ABD和△ACE中,

∴△ABD≌△ACE(SAS).

②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.

∵CE=2t,BD=3t﹣10,

∴2t=3t﹣10,

∴t=10

∴△ABD≌△ACE.

点睛:

本题是三角形综合题目,考查了等腰直角三角形的性质、全等三角形的性质与判定以及面积的计算;

本题综合性强,有一定的难度,熟练掌握等腰直角三角形的性质和分类讨论思想的运用.

3.问题背景:

EF=BE+DF;

探索延伸:

EF=BE+DF仍然成立,理由见解析;

实际应用:

此时两舰艇之间的距离是210海里.

【解析】解:

问题背景:

EF=BE+DF仍然成立.

证明如下:

如图,延长FD到G,使DG=BE,连接AG,

∵∠B+∠ADC=180°

,∠ADC+∠ADG=180°

,∴∠B=∠ADG,

在△ABE和△ADG中,

,∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,

∵∠EAF=∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,

在△AEF和△GAF中,

,∴△AEF≌△GAF(SAS),∴EF=FG,

∵FG=DG+DF=BE+DF,∴EF=BE+DF;

如图,连接EF,延长AE、BF相交于点C,

∵∠AOB=30°

+90°

+(90°

-70°

)=140°

,∠EOF=70°

,∴∠EAF=∠AOB,

又∵OA=OB,∠OAC+∠OBC=(90°

-30°

)+(70°

+50°

)=180°

,∴符合探索延伸中的条件,

∴结论EF=AE+BF成立,即EF=1.5×

(60+80)=210海里.

答:

4.

(1)1,等边三角形;

(2)理由见解析;

(3)当

时,y=2-x;

时,

y=x-2

(1)根据等腰三角形的性质得到∠B=∠ACB=30°

,求得∠ACP=30°

,根据全等三角形的性质即可得到结论;

(2)过C作CE⊥AP于E,根据等边三角形的性质得到CD=CE,根据全等三角形的性质得到OC=OP,由等边三角形的判定即可得到结论;

(3)分两种情况解决,在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,根据求得解实现的性质得到PA=BQ,求得AC=AO+AP,即可得到结论.

(1)AD=AP=1,

∵AB=AC=2,∠BAC=120°

∴∠B=∠ACB=30°

∵∠OCP=60°

∴∠ACP=30°

∵∠CAP=180°

﹣∠BAC=60°

∵AD⊥BC,

∴∠DAC=60°

在△ADC与△APC中,

∴△ACD≌△ACP,

∴CD=CP,

∴△PCO是等边三角形;

(2)△OPC还满足

(1)的结论,

理由:

过C作CE

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1