丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc

上传人:b****2 文档编号:14297678 上传时间:2022-10-21 格式:DOC 页数:29 大小:268KB
下载 相关 举报
丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc_第1页
第1页 / 共29页
丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc_第2页
第2页 / 共29页
丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc_第3页
第3页 / 共29页
丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc_第4页
第4页 / 共29页
丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc

《丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc》由会员分享,可在线阅读,更多相关《丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc(29页珍藏版)》请在冰豆网上搜索。

丰城五中鄢志坚全等三角形证明经典50题(含答案)Word格式.doc

延长CD与P,使D为CP中点。

连接AP,BP

∵DP=DC,DA=DB

∴ACBP为平行四边形

又∠ACB=90

∴平行四边形ACBP为矩形

∴AB=CP=1/2AB

3.已知:

BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:

∠1=∠2

E

F

2

1

证明:

连接BF和EF

∵BC=ED,CF=DF,∠BCF=∠EDF

∴三角形BCF全等于三角形EDF(边角边)

∴BF=EF,∠CBF=∠DEF

连接BE

在三角形BEF中,BF=EF

∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴AB=AE。

在三角形ABF和三角形AEF中

AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF

∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF(∠1=∠2)。

4.已知:

∠1=∠2,CD=DE,EF//AB,求证:

EF=AC

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC(对顶角)

∴△EFD≌△CGD

EF=CG

∠CGD=∠EFD

又,EF∥AB

∴,∠EFD=∠1

∴∠CGD=∠2

∴△AGC为等腰三角形,

AC=CG

又EF=CG

∴EF=AC

5.已知:

AD平分∠BAC,AC=AB+BD,求证:

∠B=2∠C

延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC

∴∠EAD=∠CAD

∵AE=AC,AD=AD

∴△AED≌△ACD(SAS)

∴∠E=∠C

∵AC=AB+BD

∴AE=AB+BD

∵AE=AB+BE

∴BD=BE

∴∠BDE=∠E

∵∠ABC=∠E+∠BDE

∴∠ABC=2∠E

∴∠ABC=2∠C

6.已知:

AC平分∠BAD,CE⊥AB,∠B+∠D=180°

AE=AD+BE

在AE上取F,使EF=EB,连接CF

∵CE⊥AB

∴∠CEB=∠CEF=90°

∵EB=EF,CE=CE,

∴△CEB≌△CEF

∴∠B=∠CFE

∵∠B+∠D=180°

,∠CFE+∠CFA=180°

∴∠D=∠CFA

∵AC平分∠BAD

∴∠DAC=∠FAC

∵AC=AC

∴△ADC≌△AFC(SAS)

∴AD=AF

∴AE=AF+FE=AD+BE

7.已知:

AB=4,AC=2,D是BC中点,AD是整数,求AD

∴BD=DC

∵在△ABE中

8.已知:

9.已知:

连接BF和EF。

∵BC=ED,CF=DF,∠BCF=∠EDF。

∴三角形BCF全等于三角形EDF(边角边)。

∴BF=EF,∠CBF=∠DEF。

连接BE。

在三角形BEF中,BF=EF。

又∵∠ABC=∠AED。

在三角形ABF和三角形AEF中,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。

10.已知:

又EF∥AB

∴∠EFD=∠1

11.已知:

12.已知:

又∵AC=AC

12.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:

BC=AB+DC。

在BC上截取BF=AB,连接EF

∵BE平分∠ABC

∴∠ABE=∠FBE

又∵BE=BE

∴⊿ABE≌⊿FBE(SAS)

∴∠A=∠BFE

∵AB//CD

∴∠A+∠D=180º

∵∠BFE+∠CFE=180º

∴∠D=∠CFE

又∵∠DCE=∠FCE

CE平分∠BCD

CE=CE

∴⊿DCE≌⊿FCE(AAS)

∴CD=CF

∴BC=BF+CF=AB+CD

13.已知:

AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:

∠F=∠C

AB‖ED,得:

∠EAB+∠AED=∠BDE+∠ABD=180度,

∵∠EAB=∠BDE,

∴∠AED=∠ABD,

∴四边形ABDE是平行四边形。

∴得:

AE=BD,

∵AF=CD,EF=BC,

∴三角形AEF全等于三角形DBC,

∴∠F=∠C。

14.已知:

AB=CD,∠A=∠D,求证:

∠B=∠C

设线段AB,CD所在的直线交于E,(当AD<

BC时,E点是射线BA,CD的交点,当AD>

BC时,E点是射线AB,DC的交点)。

则:

△AED是等腰三角形。

∴AE=DE

而AB=CD

∴BE=CE(等量加等量,或等量减等量)

∴△BEC是等腰三角形

∴∠B=∠C.

15.P是∠BAC平分线AD上一点,AC>

AB,求证:

PC-PB<

AC-AB

P

在AC上取点E,

使AE=AB。

∵AE=AB

AP=AP

∠EAP=∠BAE,

∴△EAP≌△BAP

∴PE=PB。

PC<EC+PE

∴PC<(AC-AE)+PB

∴PC-PB<AC-AB。

16.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:

AC-AB=2BE

在AC上取一点D,使得角DBC=角C

∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

∵∠ADB=∠C+∠DBC=2∠C;

∴AB=AD

∴AC–AB=AC-AD=CD=BD

在等腰三角形ABD中,AE是角BAD的角平分线,

∴AE垂直BD

∵BE⊥AE

∴点E一定在直线BD上,

在等腰三角形ABD中,AB=AD,AE垂直BD

∴点E也是BD的中点

∴BD=2BE

∵BD=CD=AC-AB

∴AC-AB=2BE

17.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC

∵作AG∥BD交DE延长线于G

∴AGE全等BDE

∴AG=BD=5

∴AGF∽CDF

AF=AG=5

∴DC=CF=2

18.如图,在△ABC中,BD=DC,∠1=∠2,求证:

AD⊥BC.

延长AD至BC于点E,

∵BD=DC∴△BDC是等腰三角形

∴∠DBC=∠DCB

又∵∠1=∠2∴∠DBC+∠1=∠DCB+∠2

即∠ABC=∠ACB

∴△ABC是等腰三角形

∴AB=AC

在△ABD和△ACD中

{AB=AC

∠1=∠2

BD=DC

∴△ABD和△ACD是全等三角形(边角边)

∴∠BAD=∠CAD

∴AE是△ABC的中垂线

∴AE⊥BC

∴AD⊥BC

19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.

∠OAB=∠OBA

∵OM平分∠POQ

∴∠POM=∠QOM

∵MA⊥OP,MB⊥OQ

∴∠MAO=∠MBO=90

∵OM=OM

∴△AOM≌△BOM(AAS)

∴OA=OB

∵ON=ON

∴△AON≌△BON(SAS)

∴∠OAB=∠OBA,∠ONA=∠ONB

∵∠ONA+∠ONB=180

∴∠ONA=∠ONB=90

∴OM⊥AB

20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:

AD+BC=AB.

做BE的延长线,与AP相交于F点,

∵PA//BC

∴∠PAB+∠CBA=180°

,又∵,AE,BE均为∠PAB和∠CBA的角平分线

∴∠EAB+∠EBA=90°

∴∠AEB=90°

,EAB为直角三角形

在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线

∴三角形FAB为等腰三角形,AB=AF,BE=EF

在三角形DEF与三角形BEC中,

∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,

∴三角形DEF

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 冶金矿山地质

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1