山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc

上传人:b****2 文档编号:14285639 上传时间:2022-10-21 格式:DOC 页数:20 大小:457.21KB
下载 相关 举报
山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc_第1页
第1页 / 共20页
山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc_第2页
第2页 / 共20页
山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc_第3页
第3页 / 共20页
山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc_第4页
第4页 / 共20页
山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc

《山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc》由会员分享,可在线阅读,更多相关《山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc(20页珍藏版)》请在冰豆网上搜索。

山东省潍坊市2017年中考数学真题试卷和答案Word下载.doc

平均数

9

8

方差

1

A.甲 B.乙 C.丙 D.丁

8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是(  )

9.若代数式有意义,则实数x的取值范围是(  )

A.x≥1 B.x≥2 C.x>1 D.x>2

10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°

,则∠DBC的度数为(  )

A.50°

B.60°

C.80°

D.90°

11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为(  )#N.

A.0或 B.0或2 C.1或 D.或﹣

12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为(  )

A.或2 B.或2 C.或2 D.或2

二、填空题(每小题3分,共18分)。

13.计算:

(1﹣)÷

=  .

14.因式分解:

x2﹣2x+(x﹣2)=  .

15.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:

  ,可以使得△FDB与△ADE相似.(只需写出一个)

16.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是  .

17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;

第2个图由2个正六边形、11个正方形和10个等边三角形组成;

第3个图由3个正六边形、16个正方形和14个等边三角形组成;

…按照此规律,第n个图中正方形和等边三角形的个数之和为  个.

18.如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=BC.则矩形纸片ABCD的面积为  .

三、解答题:

19.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.

(1)根据给出的信息,补全两幅统计图;

(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?

(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?

20.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;

上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°

,在B处测得四楼顶点E的仰角为30°

,AB=14米.求居民楼的高度(精确到0.1米,参考数据:

≈1.73)

21.某蔬菜加工公司先后两批次收购蒜薹(tá

i)共100吨.第一批蒜薹价格为4000元/吨;

因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元.

(1)求两批次购进蒜薹各多少吨?

(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:

粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?

最大利润是多少?

22.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.

(1)求证:

EF为半圆O的切线;

(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)

23.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;

并求长方体底面面积为12dm2时,裁掉的正方形边长多大?

(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

24.边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2

(1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?

并说明理由.

(2)如图2,将△DEC绕点C旋转∠α(0°

<α<360°

),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.

①在旋转过程中,AD′和BE′有怎样的数量关系?

并说明理由;

②连接AP,当AP最大时,求AD′的值.(结果保留根号)

25.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t

(1)求抛物线的解析式;

(2)当t何值时,△PFE的面积最大?

并求最大值的立方根;

(3)是否存在点P使△PAE为直角三角形?

若存在,求出t的值;

若不存在,说明理由.

答案

一、选择题(每小题3分,满分36分)

1.D

2.D.

3.C.

4.B.

5.A.

6.解:

过C作CF∥AB,

∵AB∥DE,

∴AB∥CF∥DE,

∴∠1=∠α,∠2=180°

﹣∠β,

∵∠BCD=90°

∴∠1+∠2=∠α+180°

﹣∠β=90°

∴∠β﹣∠α=90°

故选B.

7.解:

丙的平均数==9,丙的方差=[1+1+1=1]=0.4,

乙的平均数==8.2,

由题意可知,丙的成绩最好, 

8.C.

9.B

10.解:

如图,∵A、B、D、C四点共圆,

∴∠GBC=∠ADC=50°

∵AE⊥CD,

∴∠AED=90°

∴∠EAD=90°

﹣50°

=40°

延长AE交⊙O于点M,

∵AO⊥CD,

∴,

∴∠DBC=2∠EAD=80°

故选C.

11.解:

当1≤x≤2时,x2=1,解得x1=,x2=﹣;

当﹣1≤x≤0时,x2=0,解得x1=x2=0;

当﹣2≤x<﹣1时,x2=﹣1,方程没有实数解;

所以方程[x]=x2的解为0或.

12.解:

过B作直径,连接AC交AO于E,

∵点B为的中点,

∴BD⊥AC,

①如图①,

∵点D恰在该圆直径的三等分点上,

∴BD=×

3=2,

∴OD=OB﹣BD=1,

∵四边形ABCD是菱形,

∴DE=BD=1,

∴OE=2,

连接OD,

∵CE==,

∴边CD==;

如图②,BD=×

3=4,

同理可得,OD=1,OE=1,DE=2,

∵CE===2,

∴边CD===2,

故选D.

二、填空题(每小题3分,满分18分)

13.解:

=

=x+1,

14.(x+1)(x﹣2).

15.解:

DF∥AC,或∠BFD=∠A.

理由:

∵∠A=∠A,==,

∴△ADE∽△ACB,

∴①当DF∥AC时,△BDF∽△BAC,

∴△BDF∽△EAD.

②当∠BFD=∠A时,∵∠B=∠AED,

∴△FBD∽△AED.

故答案为DF∥AC,或∠BFD=∠A.

16.解:

∵关于x的一元二次方程kx2﹣2x+1=0有实数根,

∴△=b2﹣4ac≥0,

即:

4﹣4k≥0,

解得:

k≤1,

∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,

故k≤1且k≠0.

17.解:

∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,

∴正方形和等边三角形的和=6+6=12=9+3;

∵第2个图由11个正方形和10个等边三角形组成,

∴正方形和等边三角形的和=11+10=21=9×

2+3;

∵第3个图由16个正方形和14个等边三角形组成,

∴正方形和等边三角形的和=16+14=30=9×

3+3,

…,

∴第n个图中正方形和等边三角形的个数之和=9n+3.

18.解:

设BE=a,则BC=3a,

由题意可得,

CB=CB′,CD=CD′,BE=B′E=a,

∵B′D′=2,

∴CD′=3a﹣2,

∴CD=3a﹣2,

∴AE=3a﹣2﹣a=2a﹣2,

∴DB′===2,

∴AB′=3a﹣2,

∵AB′2+AE2=B′E2,

解得,a=或a=,

当a=时,BC=2,

∵B′D′=2,CB=CB′,

∴a=时不符合题意,舍去;

当a=时,BC=5,AB=CD=3a﹣2=3,

∴矩形纸片ABCD的面积为:

3=15, 

四、解答题

19.解:

(1)抽取的学生数:

16÷

40%=40(人);

抽取的学生中合格的人数:

40﹣12﹣16﹣2=10,

合格所占百分比:

10÷

40=25%,

优秀人数:

12÷

40=30%,

如图所示:

(2)成绩未达到良好的男生所占比例为:

25%+5%=30%,

所以600名九年级男生中有600×

30%=180(名);

(3)如图:

可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,

所以甲、乙两人恰好分在同一组的概率P==.

20.解:

设每层楼高为x米,

由题意得:

MC′=MC﹣CC′=2.5﹣1.5=1米,

∴DC′=5x+1,EC′=4x+1,

在Rt△DC′A′中,∠DA′C′=60°

∴C′A′==(5x+1),

在Rt△EC′B′中,∠EB′C′=30°

∴C′B′==(4x+1),

∵A′B′=C′B′﹣C′A′=AB,

∴(4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 水产渔业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1