最新七年级数学平行线的有关证明及答案Word格式.docx

上传人:b****2 文档编号:14263288 上传时间:2022-10-21 格式:DOCX 页数:10 大小:90.53KB
下载 相关 举报
最新七年级数学平行线的有关证明及答案Word格式.docx_第1页
第1页 / 共10页
最新七年级数学平行线的有关证明及答案Word格式.docx_第2页
第2页 / 共10页
最新七年级数学平行线的有关证明及答案Word格式.docx_第3页
第3页 / 共10页
最新七年级数学平行线的有关证明及答案Word格式.docx_第4页
第4页 / 共10页
最新七年级数学平行线的有关证明及答案Word格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

最新七年级数学平行线的有关证明及答案Word格式.docx

《最新七年级数学平行线的有关证明及答案Word格式.docx》由会员分享,可在线阅读,更多相关《最新七年级数学平行线的有关证明及答案Word格式.docx(10页珍藏版)》请在冰豆网上搜索。

最新七年级数学平行线的有关证明及答案Word格式.docx

例3

(1)已知:

如图2-4①,直线AB∥ED,求证:

∠ABC+∠CDE=∠BCD;

(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?

并证明.

在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.

例4如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°

,第二次拐的角∠B是150°

,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?

把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.

举一反三:

1.如图2-9,FG∥HI,则∠x的度数为()

A.60°

B.72°

C.90°

D.100°

2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°

,∠B-∠D=24°

,求∠GEF的度数.

3.已知:

如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.

求证:

∠B=∠E.

例4如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.

解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.

5.如图1-7,已知直线,且和、分别交于A、两点,点P在AB上,和、分别交于C、D两点,连接PC、PD。

(B)试求出∠1、∠2、∠3之间的关系,并说明理由。

(C)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化。

(D)如果点P在AB两点的外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)

6.如图2-11,CD平分∠ACB,DE∥AC,EF∥CD,EF平分∠DEB吗?

请说明理由.

7.如图1-12,CD∥EF,∠1+∠2=∠ABC,

AB∥GF

8.如图2-13,已知AB∥CD,∠ECD=125°

,∠BEC=20°

,求∠ABE的度数.

答案:

1.根据两直线平行,内错角相等及角平分线定义求解.

(标注∠MND=∠AMN,∠DNP=∠EPN)

(标注∠MND=∠AMN=60°

∠DNP=∠EPN=80°

解:

(1)∵AB∥CD∥EF,

∴∠MND=∠AMN=60°

∴∠MNP=∠MND+∠DNP=60°

+80°

=140°

又NQ平分∠MNP,

∴∠MNQ=∠MNP=×

140°

=70°

∴∠DNQ=∠MNQ-∠MND=70°

-60°

=10°

∴∠MNP,∠DNQ的度数分别为140°

,10°

.(下一步)

(2)(标注∠MND=∠AMN,∠DNP=∠EPN)

(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,

∴∠MNQ=∠MNP=(∠AMN+∠EPN),

∴∠DNQ=∠MNQ-∠MND

=(∠AMN+∠EPN)-∠AMN

=(∠EPN-∠AMN),

即2∠DNQ=∠EPN-∠AMN.

2.(标注:

∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:

(标注:

∠1=∠2=∠DCB)

证明:

因为∠AGD=∠ACB,

所以DG∥BC,

所以∠1=∠DCB,

又因为CD⊥AB,EF⊥AB,

所以CD∥EF,

所以∠2=∠DCB,

所以∠1=∠2.

3.

(1)动画过点C作CF∥AB

由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)

如图,过点C作CF∥AB,

∵直线AB∥ED,

∴AB∥CF∥DE,

∴∠1=∠ABC,∠2=∠CDE.

∵∠BCD=∠1+∠2,

∴∠ABC+∠CDE=∠BCD;

(2)解析:

动画过点C作CF∥AB,由平行线性质找到角的关系.

(标注∠ABC+∠1=180°

,∠2+∠CDE=180°

∠ABC+∠BCD+∠CDE=360°

∴∠ABC+∠1=180°

.

∴∠ABC+∠BCD+∠CDE=360°

4.动画过点B作BD∥AE,

过点B作BD∥AE,∵AE∥CF,

∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°

∵∠A=120°

,∠1+∠2=∠ABC=150°

∴∠2=30°

∴∠C=180°

-30°

=150°

例题

1.解析:

∠AEG=180°

-120°

=60°

由外凸角和等于内凹角和有60°

+30°

=x+48°

,解得x=72°

答案:

B.

2.解:

∵AB∥EF∥CD,

∴∠B=∠BEF,∠DEF=∠D.

∵∠B+∠BED+∠D=192°

即∠B+∠BEF+∠DEF+∠D=192°

∴2(∠B+∠D)=192°

即∠B+∠D=96°

∵∠B-∠D=24°

∴∠B=60°

即∠BEF=60°

∵EG平分∠BEF,

∴∠GEF=∠BEF=30°

3.解析:

标注AB∥EF,BC∥ED

∵AB∥EF,

∴∠E=∠AGD.

∵BC∥ED,

∴∠B=∠AGD,

∴∠B=∠E.

4.解析:

标注AB∥CD,∠1=∠2

方法一:

(标注CF∥BE)

需添加的条件为CF∥BE,

理由:

∵AB∥CD,

∴∠DCB=∠ABC.

∵CF∥BE,

∴∠FCB=∠EBC,

∴∠1=∠2;

方法二:

(标注CF,BE,∠1=∠2=∠DCF=∠ABE)解:

添加的条件为CF,BE分别为∠BCD,∠CBA的平分线.

∵CF,BE分别为∠BCD,∠CBA的平分线,

∴∠1=∠2.

5.解:

(1)解析:

在题目中直接画出辅助线

∠3=∠1+∠2。

如图

(1)所示

过点P作PE∥交于E,则∠1=∠CPE,

又因为∥,所以PE∥,则∠EPD=∠2,

所以∠CPD=∠1+∠2,即∠3=∠1+∠2

(2)解析:

点P在A、B两点之间运动时,∠3=∠1+∠2的关系不会发生改变。

(3)解析:

如图

(2)和(3)所以,当P点在A、B两点外侧运动时,分两种情况:

6.解析:

标注CD平分∠ACB,DE∥AC,EF∥CD

标注∠CDE=∠ACD=∠DCE=∠DEF=∠BEF

EF平分∠DEB.理由如下:

∵DE∥AC,EF∥CD,

(2)文化优势∴∠CDE=∠ACD,∠CDE=∠DEF,

因为是连锁店,老板的“野心”是开到便利店那样随处可见。

所以办了积分卡,方便女孩子到任何一家“漂亮女生”购物,以求便宜再便宜。

∠BEF=∠DCE.

∵CD平分∠ACB,

1、作者:

蒋志华《市场调查与预测》,中国统计出版社2002年8月§

11-2市场调查分析书面报告∴∠DCE=∠ACD,

∴∠DEF=∠BEF,

即EF平分∠DEB.

此次调查以女生为主,男生只占很少比例,调查发现58%的学生月生活费基本在400元左右,其具体分布如(图1-1)

1、购买“女性化”7.解析:

如图,作CK∥FG,延长GF、CD交于H,则∠H+∠2+∠KCB=180°

.因为CD∥EF,所以∠H=∠1,又因为∠1+∠2=∠ABC,所以∠ABC+∠KCB=180°

,所以CK∥AB,所以AB∥FG.

8.解析:

(过E点作EF∥CD)标注AB∥EF∥CD

8、你是如何得志DIY手工艺制品的?

过E点作EF∥CD,

∴∠ECD+∠CEF=180°

参考文献与网址:

而∠ECD=125°

在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。

在人民广场地下“的美”购物中心,有一家DIY自制饰品店---“碧芝自制饰品店”。

∴∠CEF=180°

-125°

=55°

我们女生之所以会钟爱饰品,也许是因为它的新颖,可爱,实惠,时尚,简单等。

的确,手工艺品价格适中。

也许还有更多理由和意义。

那么大学生最喜欢哪种手工艺品呢?

此次调查统计如下图(1-3)∴∠BEF=∠BEC+∠CEF=20°

+55°

=75°

∵AB∥CD,∴AB∥EF,

∴∠ABE=∠BEF=75°

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1