三相逆变器matlab仿真Word下载.docx
《三相逆变器matlab仿真Word下载.docx》由会员分享,可在线阅读,更多相关《三相逆变器matlab仿真Word下载.docx(8页珍藏版)》请在冰豆网上搜索。
现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:
1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4)…………….
2三相逆变电路
三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°
交流电的一种逆变网络。
图1三相逆变电路
日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。
随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。
尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。
在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。
这就催生了三相逆变器的产生。
measurement和voltagemeasurement1,并将结果输出到示波器模块Scope1.
4.1仿真中的各个模块及其参数设定
1)整流桥
图3通用三相整流桥模块
其中Numberofbridgearms(桥臂个数)为3,PowerElectronicdevice(电力电子器件)选用IGBT/Diodes(晶闸管)。
2)SPWM脉冲信号发生器模块
图4SPWM脉冲发生器
图4为为控制通用三相整流桥产生SPWM的脉冲信号发生器,使用的是Matlab中的DiscretePWMGenerator模块。
该模块的作用即为为产生PWM而用以控制IGBTs等电桥的脉冲信号。
为该模块的参数设置,在Generatormode选项中选择3-armsbridge(6pulse),既三桥臂共需要六个脉冲信号用以控制如错误!
未找到引用源。
中所示的六个电子管。
Carrierfrequency为载波频率,该频率的大小决定了一个周期内SPWM脉冲的密度Frequencyofoutputvoltage是输出电压的频率,此处设置为国内标准的50Hz。
3)其他模块
为模拟真实供电效果,在仿真系统中,整流桥输出的电压通入一个三相变压器后接入一个三相的RLC负载模块。
三相变压器的原边为三角形绕组,副边为星型绕组。
负载标称电压:
220v,标称频率50Hz,有功功率:
1000W,电感无功功率:
0W,电容无功功率:
500W。
图5变压器及负载模块
4.2仿真特性分析
在仿真中,在整流桥的输出和变压器的输出加上了电压测量模块,并将测量显示在了一个示波器模块上。
仿真时间设定为0.1s。
如图6所示便是仿真后的输出结果,上部分为整流桥的输出波形,下部分为变压器副边的电压波形
图6示波器输出波形
将示波器的横轴时间设定为0.01s后的图形如下:
图70.03s内的波形图
观察波形可知,没半个周期输出的脉冲数为21个。
4.2.1载波频率与输出电压频率改变对波形的影响
1.将DiscretePWMGenerator模块中的载波频率有原来的1080Hz提高至2160Hz。
所得波形如图8所示。
图8载波频率为2160Hz时的波形图1
可以清楚的观察到,PWM脉冲密度加大,正弦波形较原来更加光滑。
放大后的波形图如下:
图9载波频率为2160Hz
观察图形可知,没半个周期内的脉冲个数为43个。
由两个仿真结果可见,载波频率直接影响了波形的光滑度,载波频率越大波纹越小仿正弦效果越好。
但也应注意到频率过高有可能对整流桥器件产生影响,所以也不能过于高。
2.载波频率为1080Hz,将输出电压的频率提高为100Hz后:
图10输出电压为100Hz载波频率1080
图11放大图输出电压为100Hz
观察波形,没半个周期内的脉冲个数为11个。
改变输出电压后可以注意到,波纹想对于50Hz时变小了,但由于没半个周期内的脉冲个数由21个变为了11个,所以仿正弦效果大大下降了,可见如若提高输出电压的频率后,不改变载波频率,逆变效果会打折扣。
可见,在提高了输出电压频率的同时,成比例的提高载波频率,便可以使得仿正弦波保持原来的波形质量。
4.2.2改变负载对输出的影响
将载波频率与输出电压频率固定为1080Hz和50Hz。
a)去除负载后(既变压器副边开路)的仿真波形。
图12去除负载后的仿真波形
b)改变负载有功功率为100W。
图13减小负载有功功率为100W的波形
减小负载后可以发现,在系统启动的初期,波形不稳定有很大的震荡而后期则趋于稳定,波形与1000W时相比并无差别。
c)改变负载有功功率为10KW的波形
图14有功功率为10KW时的波形
增加有功功率后,启动时波形震荡减小能够较快进入稳态。
增大容性功率后,波形较之前更为光滑,但启动时产生了波动,但进入稳态后波形仿制效果更佳理想。
结论
通过应用Matlab软件,构建了一个使用无源型三相逆变电路供电的系统,并进行了仿真。
在对获得的仿真波形分析中,定性地讨论了逆变器的两个主要参数——载波频率和输出电压频率以及不同负载对系统仿真结果的影响。
获得以下结论:
(一)在电压输出频率一定的情况下,载波频率的大小决定了每个周期内的仿正弦脉冲个数,即决定了正弦波形的仿制质量。
(二)负载有功功率越大,系统进入稳态的时间越快,较小的负载有功功率会在暂态时产生很大的波动。
(三)负载的容性无功功率的增大,一方面可以使得正弦电压仿制质量提高,但另一方面会在暂态时产生过大的过载电压,并且延缓系统进入暂态的时间。
(四)负载的感性功率对于正弦电压的仿制并无太大影响。