最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx

上传人:b****1 文档编号:14217108 上传时间:2022-10-20 格式:DOCX 页数:45 大小:245.10KB
下载 相关 举报
最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx_第1页
第1页 / 共45页
最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx_第2页
第2页 / 共45页
最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx_第3页
第3页 / 共45页
最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx_第4页
第4页 / 共45页
最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx_第5页
第5页 / 共45页
点击查看更多>>
下载资源
资源描述

最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx

《最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx》由会员分享,可在线阅读,更多相关《最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx(45页珍藏版)》请在冰豆网上搜索。

最湘教版初二数学八年级下册第二章《四边形》全章导学案Word格式.docx

(4)三角形、四边形都属于多边形,是“多边形”这个统称中的具体实例。

  

2、多边形的顶点、边、角、对角线等概念仿照四边形,以图4-9为例,指出:

多边形的顶点,并读出这个多边形(如图2-2,读成五边形ABCDE。

),同样要注意按顶点的顺序;

再让学生指出多边形的边、多边形的

角;

最后让学生画出多边形的对角线和外角

3、我们利用四边形的对角线把四边形划分成两个三角形的方法,证明了四边形内

角和定理,怎样求得多边形的内角和呢?

提出这个问题,学生讨论。

 

探究操作:

以五、六、七、八边形为例填写教P35的表格

 

可以作出推理:

  ∵这n个三角形的内角和等于

n,

  以O为公共顶点的n各角的和为360°

=2×

180°

  ∴n边形的内角和等于n×

-2×

=(n-2)·

多边形内角和定理:

n边形的内角和等于_________.

三、达标练习:

  1、已知:

如图,直线OB⊥AB,垂足为B,直线OC⊥AC,垂足为C。

求证:

(1)∠A+∠1=180°

(2)∠A=∠2。

2.一个多边形的内角和等于1080度,求这个多边形的边数。

 

3.一个多边的每一个内角等于120度,求这个多边形的边数。

4、课堂小结:

1、三角形、四边形都属于多边形,所以四边形的定义、边、角、内角、内角

和、周长等概念,只需将4换成n,意义都是相同的.

2、n边形的内角和等于(n-2)·

 第十四课 2.1多边形

(2)——多边形的外角和

1、理解多边形的外角和等于360°

的性质。

2、使学生了解四边形的不稳定性及其作用。

四边形的外角概念及外角和性质。

四边形的不稳定性及其作用

学习过程:

一、复习:

1、十边形的内角和等于___________.

2、如果一个多边形的内角和等于

,那么这个多边形是_____边形

3、三角形共有___个外角,同一个顶点处的两个外角是一对_________角,它

们是_____的,并且每一个外角与公共顶点的内角互___等于_____度.

二、探知:

1、四边形外角的概念:

2、学生观察、讨论,注意四边形有几个外角,这些外角有什么关系。

总结:

(1)四边形共有____个外角;

(2)每一个外角都是与它公共顶点的四边形内角的_____角;

(3)四边形的8个外角是4对______角。

3、四边形外角和的概念:

在四边形的每个顶点处取它的___个外角,这

_____________的和就是四边形的外角和。

例1已知:

如图,四边形ABCD的四个角分别为∠1、∠2、∠3、∠4,每个

顶点处有一个外角,设它们分别为∠α、∠β、∠γ、∠δ。

求:

∠α+∠β+∠γ+∠δ。

由例1可得:

四边形的外角和等于________.

4、探求n边形的外角和:

多边形的外角和定理:

四边形的外角和等于360°

5.四边形的不稳定性

举出四边形不稳定性的应用实例和克服不稳定的实例

例2:

已知一个多边形的每一个外角是它每个内角的一半,求这个多边形的边数

三、达标练习

1)填空:

如果一个多边形内角和等它的外角和,那么它是(  )边形.   

2)一个多边形的内角和是外角和的2.5倍,那么这个多边形是几边形。

四、小结

(1)研究四边形的问题,常添对角线,转化为三角形问题来解决;

(2)四边形改变形状时,只改变某些角的大小,它的边长不变,周长不变,

因为它仍然是四边形,所以它的内角和不变

(3)多边形的内角和定理

(4)多边形的外角和定理

第十五课2.2.1平行四边形的性质

(一)

学习目标

1.理解平行四边形的边、顶点、内角、对角线等概念;

2、理解平行四边形的定义、掌握平行四边形的性质定理1及性质定理2

3、理解两条平行线的距离的概念

4、培养学生综合运用知识的能力

学习重点难点

重点:

平行四边形的概念和性质1和性质2

难点:

平行四边形的性质1和性质2的应用

学习过程

一、复习提问:

1、一个多边形的外角和是它内角和的

,求这个多边形的边数.

2、我们已经学过哪些图形是四边形?

在四边形中,最常见、价值最大的是平行四边形,如推拉门、汽车防护链、书

本等,都是平行四边形,平行四边形有哪些性质呢?

1、平行四边形的定义:

(1)定义:

__________________的四边形叫做平行四边形。

(2)几何语言表述∵AB∥CDAD∥BC∴四边形ABCD是平行四边形

(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,

2、反过来,“平行四边形”就一定具有“两组对边分别平行”性质。

平行四边形的表示:

用符号表示,如ABCD

3、平行四边形的性质

(1)共性:

具有一般四边形的性质

(2)特性:

角:

平行四边形的__________

边:

推论夹在两条平行线间的________相等

4、两条平行线的距离的定义

三、巩固练习:

(1)在平行四边形ABCD中,∠A=∠B+

,求∠B的度数。

(2)如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE

四、小结

1、平行四边形的概念。

2、平行四边形的性质定理及其应用。

3、两条平行线的距离

五、作业:

第十六课2.2.1平行四边形的性质

(二)

1、掌握平行四边形的概念和性质,会用它们进行有关的论证和计算;

2、了解平行四边形不稳定性的应用。

平行四边形的性质定理3。

性质定理的证明方法及运用。

一、复习

1、四边形的内角和与外角和都等于____

2、平行四边形的性质定理1:

3、平行四边形的性质定理2:

二、探知

1、性质定理:

平行四边形的对角线互相平分。

证明本定理:

例1:

已知:

如图,平行四边形ABCD的对角线AC、BD相交于OEF过点O与AB、

CD分别相交于点E、F,求证:

OE=OF。

例2:

已知平行四边形ABCD,AB=8cm,BC=10cm,∠B=30°

求平行四边形ABCD的面积。

2、平行四边形的面积等__________________.

小结:

平行四边形的对边______且______;

对角________;

对角线互相_____;

3、达标练习:

1、判断:

(1)在平行四边形ABCD中,AC交BD于O,则AO=OB=OC=OD。

()

(2)平行四边形两条对角线的交点到一组对边的距离相等。

2、填空:

平行四边形的两组对边分别。

3、选择

平行四边形的对角线和它的边,可以组成()对全等三角形。

(A)2(B)3(C)4(D)6

四、作业

第十七课时2.2.2平行四边形的判定

(一)

1、掌握判定平行四边形的三种方法,即定义,判定定理

(一),

(二)

2、初步学会运用所学判定平行四边形的方法解决相关的问题

3、培养学生的实验、猜测、论证能力

5、通4、培养观察、分析能力,逆向思维、自我批判能力,以及探索创新能力

过分组讨论等方式,培养学生的协作学习习惯。

学习重点、难点

1、重点:

平行四边形的判定定理1、2及其应用。

2、难点:

平行四边形判定方法的灵活运用。

一、复习

AB

如图,平行四边ABCD的对角线AC、BD相交OO

于点O,则:

DC

1、AB=___、AD=____且AB___DC、AD__BC

2、

3、AO=____,DO=____

问题:

怎样判断一个四边形是不是平行四边形?

除了定义还有什么呢?

探究:

下列条件能够判断它是平行四边形吗?

1、一组对边平行且相等;

2、两组对边分别相等 

引导学生推理论证:

判定定理1一组对边平行且相等的四边形是平行四边形.

判定定理2:

两组对边分别相等的四边形是平行四边形。

例:

教P4例4;

教P46例6

三、达标练习

<一>填空

1、在四边形ABCD中,若一组对边ADBC,则四边形ABCD是平行四边形。

2、在四边形ABCD中,若两组对边,则四边形ABCD是平行四边形。

<二>判断

3、一组对边相等的四边形是平行四边形。

4、一组对边平行的四边形是平行四边形。

5、一组对边平行且相等的四边形是平行四边形。

6、在四边形ABCD中,若AB平行且等于CD,则AD平行且等于BC。

四、归纳小结

1、平行四边形的判定方法有哪些?

2、怎样来画符合条件的平行四边形?

3、学习了哪些研究问题的思想方法?

五、作业

第十八课2.2.2平行四边形的判定

(二)

1、掌握判定平行四边形的三种方法,即定义,判定定理

(一),

(二)

2、初步学会运用所学判定平行四边形的方法解决相关的问题

3、培养学生的实验、猜测、论证能力

4、培养观察、分析能力,逆向思维、自我批判能力,以及探索创新能力

5、通过分组讨论等方式,培养学生的协作学习习惯。

一复习

1、平行四边形的性质:

对角_____;

对边_______;

对角线____________

2、判定定理:

判定1:

________________________

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1