人教版八年级数学第十八章平行四边形教案Word格式.docx
《人教版八年级数学第十八章平行四边形教案Word格式.docx》由会员分享,可在线阅读,更多相关《人教版八年级数学第十八章平行四边形教案Word格式.docx(57页珍藏版)》请在冰豆网上搜索。
课本例题及相关练习.
四、授课类型:
新授课
五、教学方法:
讲述法、讨论法、学生讲述法。
采用“问题教学法”在情境问题中,激发学生的求知欲.
六、教学过程:
(一)、课堂引入
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?
你能总结出平行四边形的定义吗?
(1)定义:
两组对边分别平行的四边形是平行四边形.
(2)表示:
平行四边形用符号“”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.
①∵AB//DC,AD//BC,
∴四边形ABCD是平行四边形(判定);
②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).
注意:
平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)
2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
我们一起来探究一下.
让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?
度量一下,是不是和你猜想的一致?
(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.
(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)
(2)猜想平行四边形的对边相等、对角相等.
下面证明这个结论的正确性.
已知:
如图ABCD,
求证:
AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:
作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.
(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)
证明:
连接AC,
∵ AB∥CD,AD∥BC,
∴ ∠1=∠3,∠2=∠4.
又 AC=CA,
∴ △ABC≌△CDA(ASA).
∴ AB=CD,CB=AD,∠B=∠D.
又∠1+∠4=∠2+∠3,
∴ ∠BAD=∠BCD.
由此得到:
平行四边形性质1 平行四边形的对边相等.
平行四边形性质2平行四边形的对角相等.
(二)、例习题分析
例1(教材P84例1)
例2(补充)如图,在平行四边形ABCD中,AE=CF,
AF=CE.
要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.
证明略.
七、课堂小结:
回顾平行四边形定义。
八、作业设计:
P901题
九、板书设计:
一、平行四边形概念:
三、例一
二、平行四边形性质:
十、教学反思:
课后练习
1.(选择)在下列图形的性质中,平行四边形不一定具有的是().
(A)对角相等(B)对角互补(C)邻角互补(D)内角和是
2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.
18.1.1平行四边形的性质
(二)
理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
2.过程与方法:
能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
培养学生的推理论证能力和逻辑思维能力.
讲述对角线互相平分的性质,是后期的基础。
平行四边形对角线互相平分的性质,以及性质的应用.
综合运用平行四边形的性质进行有关的论证和计算.
1.复习提问:
(1)什么样的四边形是平行四边形?
四边形与平行四边形的关系是:
(2)平行四边形的性质:
①具有一般四边形的性质(内角和是).
②角:
平行四边形的对角相等,邻角互补.
边:
平行四边形的对边相等.
2.【探究】:
请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?
你能从子中看出前面所得到的平行四边形的边、角关系吗?
进一步,你还能发现平行四边形的什么性质吗?
结论:
(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.
例1(补充) 已知:
如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
OE=OF,AE=CF,BE=DF.
在ABCD中,AB∥CD,
∴ ∠1=∠2.∠3=∠4.
又OA=OC(平行四边形的对角线互相平分),
∴△AOE≌△COF(ASA).
∴ OE=OF,AE=CF(全等三角形对应边相等).
∵ABCD,∴AB=CD(平行四边形对边相等).
∴AB—AE=CD—CF.即BE=FD.
※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?
若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.
解略
例2(教材P85的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:
平行四边形的面积=底×
高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算
解略(参看教材P86).
回顾对角线互相平分的性质。
P913题
一、对角线互相平分:
二、例二
1.判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()
(2)平行四边形两条对角线的交点到一组对边的距离相等.()
(3)平行四边形的两组对边分别平行且相等.()
(4)平行四边形是轴对称图形.()
2.在ABCD中,AC=6、BD=4,则AB的范围是________.
3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.
18.1.2平行四边形的判定
(一)
1.知识与技能:
在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.过程与方法:
会综合运用平行四边形的判定方法和性质来解决问题.
培养用类比、逆向联想及运动的思维方法来研究问题.
1.作用与地位:
在理解平行四边形性质的基础上,理解并掌握用边、对角线来判定平行四边形的方法.
平行四边形的判定方法及应用.
平行四边形的判定定理与性质定理的灵活应用.
1.小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?
你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
例1(教材P87例3)已知:
如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.
四边形BFDE是平行四边形.
欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;
你还有其它的证明方法吗?
比较一下,哪种证明方法简单.
例2(补充)已知:
如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.
(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;
(2)△ABC的顶点分别是△B′C′A′各边的中点.
(1)∵A′B′∥BA,C′B′∥BC,
∴四边形ABCB′是平行四边形.
∴ ∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2)由
(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.
∴AB=B′C,AB=A′C(平行四边形的对边相等).
∴B′C=A′C.
同理 B′A=C′A,A′B=C′B.
∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.
例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?
并说说你的理由.
解:
有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.
理由是:
因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.
回顾平行四边形判定方法。
p914题
(一)、平行四边形的判定定理:
(二)、例一
1、
2、
1.(选择)下列条件中能判断四边形是平