人教版八年级数学第十八章平行四边形教案Word格式.docx

上传人:b****3 文档编号:14215506 上传时间:2022-10-20 格式:DOCX 页数:57 大小:273.60KB
下载 相关 举报
人教版八年级数学第十八章平行四边形教案Word格式.docx_第1页
第1页 / 共57页
人教版八年级数学第十八章平行四边形教案Word格式.docx_第2页
第2页 / 共57页
人教版八年级数学第十八章平行四边形教案Word格式.docx_第3页
第3页 / 共57页
人教版八年级数学第十八章平行四边形教案Word格式.docx_第4页
第4页 / 共57页
人教版八年级数学第十八章平行四边形教案Word格式.docx_第5页
第5页 / 共57页
点击查看更多>>
下载资源
资源描述

人教版八年级数学第十八章平行四边形教案Word格式.docx

《人教版八年级数学第十八章平行四边形教案Word格式.docx》由会员分享,可在线阅读,更多相关《人教版八年级数学第十八章平行四边形教案Word格式.docx(57页珍藏版)》请在冰豆网上搜索。

人教版八年级数学第十八章平行四边形教案Word格式.docx

课本例题及相关练习.

四、授课类型:

新授课

五、教学方法:

讲述法、讨论法、学生讲述法。

采用“问题教学法”在情境问题中,激发学生的求知欲.

六、教学过程:

(一)、课堂引入

1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?

平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?

你能总结出平行四边形的定义吗?

(1)定义:

两组对边分别平行的四边形是平行四边形.

(2)表示:

平行四边形用符号“”来表示.

如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.

①∵AB//DC,AD//BC,

∴四边形ABCD是平行四边形(判定);

②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).

注意:

平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)

2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

我们一起来探究一下.

让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?

度量一下,是不是和你猜想的一致?

(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.

(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)

(2)猜想平行四边形的对边相等、对角相等.

下面证明这个结论的正确性.

已知:

如图ABCD,

求证:

AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.

分析:

作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.

(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)

证明:

连接AC,

∵ AB∥CD,AD∥BC,

∴ ∠1=∠3,∠2=∠4.

又 AC=CA,

∴ △ABC≌△CDA(ASA).

∴ AB=CD,CB=AD,∠B=∠D.

又∠1+∠4=∠2+∠3,

∴ ∠BAD=∠BCD.

由此得到:

平行四边形性质1  平行四边形的对边相等.

平行四边形性质2平行四边形的对角相等.

(二)、例习题分析

例1(教材P84例1)

例2(补充)如图,在平行四边形ABCD中,AE=CF,

AF=CE.

要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.

证明略.

七、课堂小结:

回顾平行四边形定义。

八、作业设计:

P901题

九、板书设计:

一、平行四边形概念:

三、例一

二、平行四边形性质:

十、教学反思:

 

课后练习

1.(选择)在下列图形的性质中,平行四边形不一定具有的是().

(A)对角相等(B)对角互补(C)邻角互补(D)内角和是

2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().

(A)4个(B)5个(C)8个(D)9个

3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.

18.1.1平行四边形的性质

(二)

理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.

2.过程与方法:

能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

培养学生的推理论证能力和逻辑思维能力.

讲述对角线互相平分的性质,是后期的基础。

平行四边形对角线互相平分的性质,以及性质的应用.

综合运用平行四边形的性质进行有关的论证和计算.

1.复习提问:

(1)什么样的四边形是平行四边形?

四边形与平行四边形的关系是:

(2)平行四边形的性质:

①具有一般四边形的性质(内角和是).

②角:

平行四边形的对角相等,邻角互补.

边:

平行四边形的对边相等.

2.【探究】:

请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?

你能从子中看出前面所得到的平行四边形的边、角关系吗?

进一步,你还能发现平行四边形的什么性质吗?

结论:

(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;

(2)平行四边形的对角线互相平分.

例1(补充) 已知:

如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.

OE=OF,AE=CF,BE=DF.

在ABCD中,AB∥CD,

∴ ∠1=∠2.∠3=∠4.

又OA=OC(平行四边形的对角线互相平分),

∴△AOE≌△COF(ASA).

∴ OE=OF,AE=CF(全等三角形对应边相等).

∵ABCD,∴AB=CD(平行四边形对边相等).

∴AB—AE=CD—CF.即BE=FD.

※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?

若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.

  

解略

例2(教材P85的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:

平行四边形的面积=底×

高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算

解略(参看教材P86).

回顾对角线互相平分的性质。

P913题

一、对角线互相平分:

二、例二

1.判断对错

(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()

(2)平行四边形两条对角线的交点到一组对边的距离相等.()

(3)平行四边形的两组对边分别平行且相等.()

(4)平行四边形是轴对称图形.()

2.在ABCD中,AC=6、BD=4,则AB的范围是________.

3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.

18.1.2平行四边形的判定

(一)

 

1.知识与技能:

在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.过程与方法:

会综合运用平行四边形的判定方法和性质来解决问题.

培养用类比、逆向联想及运动的思维方法来研究问题.

1.作用与地位:

在理解平行四边形性质的基础上,理解并掌握用边、对角线来判定平行四边形的方法.

平行四边形的判定方法及应用.

平行四边形的判定定理与性质定理的灵活应用.

1.小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?

你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

例1(教材P87例3)已知:

如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.

四边形BFDE是平行四边形.

欲证四边形BFDE是平行四边形可以根据判定方法2来证明.

(证明过程参看教材)

问;

你还有其它的证明方法吗?

比较一下,哪种证明方法简单.

例2(补充)已知:

如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.

(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

(2)△ABC的顶点分别是△B′C′A′各边的中点.

(1)∵A′B′∥BA,C′B′∥BC,

∴四边形ABCB′是平行四边形.

∴ ∠ABC=∠B′(平行四边形的对角相等).

同理∠CAB=∠A′,∠BCA=∠C′.

(2)由

(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.

∴AB=B′C,AB=A′C(平行四边形的对边相等).

∴B′C=A′C.

同理 B′A=C′A,A′B=C′B.

∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.

例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?

并说说你的理由.

解:

有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.

理由是:

因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.

回顾平行四边形判定方法。

p914题

(一)、平行四边形的判定定理:

(二)、例一

1、

2、

1.(选择)下列条件中能判断四边形是平

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1