北师大版初二数学上册教案全册21Word文档下载推荐.docx
《北师大版初二数学上册教案全册21Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《北师大版初二数学上册教案全册21Word文档下载推荐.docx(150页珍藏版)》请在冰豆网上搜索。
教师准备
录音机、投影仪、剪刀、长方形纸片。
学生准备
预习、剪刀、长方形纸片
四、教学方法
启发式教学
五、教学过程设计
一、导入
教师活动
学生活动
展示图片并播放录音。
宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。
观察图片,听录音。
、
§
1.1生活中的立体图形
(2)
二、教学目标
1、通过观察生活中的大量物体,认识基本的几何体。
2、经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
三、教学重点和难点
四、教学手段
五、教学方法
六、教学过程设计
1、引入:
(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)
(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:
(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。
老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:
直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论如何对以上几何体进行分类:
a、按底面
b、按侧面
学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?
无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:
投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:
(1)、上图中哪些物体的形状与长方体、正方体类似?
(学生在回答桌面时老师应指出桌面是指整个层面)
(2)上图中哪些物体的形状与圆柱、圆锥类似?
挂篮球的网袋是否类似于圆锥?
为什么?
(3)请找出上图中与笔筒形状类似的物体?
(4)请找出上图中与地球形状类似的物体?
4、想一想:
生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:
与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。
我们也学会简单地区别不同的物体。
七、练习设计
P4习题
八、板书设计
1.1生活中的立体图形
(2)
(一)知识回顾(四)例题解析(六)课堂小结
(二)观察发现例3、例4
(三)解方程(五)课堂练习练习设计
九、教学后记
第四课时
一、课题§
1.1生活中的立体图形(3)
1.从现实生活中抽象出点、线、面等图形,培养学生的观察能力。
2.掌握点、线、面、体之间的关系。
重点是点、线、面、体之间的关系。
难点是对“面动成体”的理解。
(一)、引入
上节课我们观察和讨论了生活中的一些几何体,今天再一起来寻找构成图形更基本的元素面、线、点。
1.展示投影(建筑、生活实物等)让学生找出其中的平面、曲面、直线、曲线、点等。
2.你能举出更多生活中包含平面、曲面、直线、曲线、点等图形的例子吗?
(二)、新授
1.由观察总结出:
面与面相交得到线,线与线相交得到点。
2.投影展示正方体和圆柱体
议一议:
1)正方体是由几个面围成的?
圆柱体是由几个面围成的?
它们都是平的吗?
2)圆柱的侧面与底面相交成几条线?
它们是直的还是曲的?
3)正方体有几个顶点?
经过每个顶点有几条边?
和学生共同总结得到:
体由面组成,面由线组成,线由点组成。
3.投影展示课本P6想一想图形(动态)
与学生共同填写:
点动成 ,线动成 , 动成体。
4.你能举出更多反映“点动成线,线动成面,面动成体”的例子吗?
5.课堂练习:
投影展示长方形(矩形),想一想将长方形绕其中一边旋转一周,得到什么几何体?
教师用投影动态演示旋转情况,加深学生印象,从而化解难度。
(三)、小结
1.生活中图形丰富多彩,点、线、面都是构成图形的基本元素。
P7习题1.2.
自己动手用一张白纸经过裁剪围一个三棱柱(不必粘贴),再围一个四棱柱及一个五棱柱。
(注意:
可先找一些实物研究)
1.1生活中的立体图形(3)
(二)观察发现例5、例6
第五课时
1.2展开和折叠
1、体会从古至今数学始终伴随着人类的进步与发展,增进学习数学的兴趣。
2、通过具体实例体会数学的存在及数学的美,发展应用意识。
体会数学伴随着人类的进步与发展,人类离不开数学。
1.我们已经知道,数学伴随我们的一生,实际上整个人类社会都离不开数学。
板书课题:
人类离不开数学。
2.大数学家克莱因说过:
“数学是人类最高超的智力成就,也是人类心灵独特的创作。
音乐能激发或抚慰人的情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
”
1.学生举出周围的实例,说明人类离不开数学。
二、导学
1.自然界中的数学——数学的存在
1.天工造物,每每使人惊叹不已;
生物进化提示的规律,有时几个世纪也难以洞悉其中的奥秘。
蜂房的构造,大概最令人折服的实例之一。
18世纪初,法国学者马拉尔琪实测了蜂房底部菱形,得出令人惊异而有趣得结论:
拼成蜂房底部的每个菱形的蜡板,钝角都是109°
28ˊ,锐角都是70°
32ˊ。
瑞士数学家克尼格经过精心计算,结果更令人震惊:
建造同样体积且用料最省的蜂房,菱形的两角应是109°
26ˊ与
70°
34ˊ,与实测仅差2分。
人们对蜜蜂出类拔萃的“建筑术”赞叹万分之余,无人去理会这不起眼的“2分”。
不料蜜蜂却不买克尼格的账,冷酷的科学事实后来去判断错方是克尼格。
公元1743年,大数学家马克劳林改用数学用表重新计算,得出的结论与马拉尔琪的实测不差分毫。
简直不可思议。
1.阅读课本第3页:
蜜蜂营造的蜂房——体会自然界中存在着数学。
2.思考并回答:
太阳能的蓄水桶为什么做成圆柱体而不做成长方体?
(答案:
同样面积的材料做成的圆柱体比长方体的容积大;
或者同样容积的圆柱体比长方体用料省。
2.人们身边的数学——数学的应用
1.大自然的鬼斧神工使几何图形的对称美成了造型艺术、建筑美学的基础。
雪花的对称性就是大自然的杰作。
晶体(如冰糖)的表面对称极为精巧,并由此内含着深刻的物理性质。
在人类赖以生存的建筑群中,小到衣物装饰,大到房屋建筑、路面铺设,几乎处处都有美丽的对称性装饰,古代皇宫中壁画的边饰等无不含有极为壮丽的对称美,以至亡国之君李煜在身受软禁之际,还深情怀恋昔日的“雕阑玉砌应犹在”。
投影:
课本第4页至第5页道路铺设平面图,可适当增加。
练习:
第5页第2题。
(建议:
在课前或课堂上让学生做几个正六边形,可让学生直接在图形上临摹后剪下,教师也要事先准备好。
2.人类从蛮荒时代的结绳计数,到如今用电子计算机指挥宇宙飞船航行,任何时候都受到数学的恩惠和影响,到处都体现着人类数学智慧的结晶。
在天体运动着的星球遵循四种轨道,人造卫星、行星、彗星等依据运动速度的不同(即7.9千米秒、11.2千米秒、16.7千米秒三种宇宙速度)顺从地运行在圆、椭圆、抛物线及双曲线的轨道中。
人造地球卫星要想发射成功,必须达到第一宇宙速度。
人类在进步、社会在发展。
随着市场经济的发展,成本、利润、投入、产出、贷款、股份、市场预测、风险评估等一系列经济词汇频繁使用,买卖与批发、存款与保险、股票与债券等,几乎每天都会碰到,而这些经济活动无一能离开数学。
(教师向学生投影展示报纸上的上证或深证走势图。
1.观看投影并回答下列问题:
(1)说出所展示的图形中分别是由哪些形状的地砖铺成的;
(2)你认为哪一种铺设方法最常见、最美观。
2.当堂完成作业第8页第3题。
(1)、
(2)两问可让学生直接回答;
第(3)问先让学生独立思考,然后讨论,尽量让更多的学生由回答问题的机会,从中体会成功的喜悦。
3.群芳斗妍曲径幽——数学的美(本节属增加内容,可根据时间自行调节)
1.数学势人类最伟大的精神产品之一。
每一个数学公式,就是一首诗,公式C=2πR就是其中一例。
司空见惯的图形——圆,内含的周长与半径有着异常简洁、和谐的关系,一个传奇的数π把她们紧紧相连。
天地间有无数个圆,惟有C=2πR这个纯粹的圆最精致、最完美。
这是数学家的智慧与大自然灵气撞击而再生的哲理美,因而人们常用“圆满”比喻十全十美。
比例的数量关系,以其天造地设的美感令人叹为观止。
把长为c的线段分为a(较长)、b(较短)两段,使之符合a︰c≈0.618。
这0.618是最美、最巧妙的比例,人们称之为“黄金分割”。
法国的圣母巴黎院、中国的故宫、埃及的金字塔的构图都融入了“黄金分割”的匠心。
2.小结:
本节课从同学们自己身边的实例入手,从三个方面说明数学就在我们身边,人类离不开数学,数学就是人类进步与发展的晴雨表。
3.布置作业:
请你设计一幅道路铺设平面图。
(教师课后可将学生设计的平面图展示交流。
课堂基础练习
1、计算:
1–2+3–4+5–6+…–100+101=.
答案:
–50
2、计算:
1+2+3+…+2003+2004+2003+…+3+2+1=.
3、如图1-1-7:
这块拼花由哪些图组成?
正三角形、正方形、正六边形
课后延伸练习
1、今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图