高三数学解析三轮复习学生版Word下载.docx

上传人:b****2 文档编号:14132138 上传时间:2022-10-19 格式:DOCX 页数:12 大小:404.10KB
下载 相关 举报
高三数学解析三轮复习学生版Word下载.docx_第1页
第1页 / 共12页
高三数学解析三轮复习学生版Word下载.docx_第2页
第2页 / 共12页
高三数学解析三轮复习学生版Word下载.docx_第3页
第3页 / 共12页
高三数学解析三轮复习学生版Word下载.docx_第4页
第4页 / 共12页
高三数学解析三轮复习学生版Word下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

高三数学解析三轮复习学生版Word下载.docx

《高三数学解析三轮复习学生版Word下载.docx》由会员分享,可在线阅读,更多相关《高三数学解析三轮复习学生版Word下载.docx(12页珍藏版)》请在冰豆网上搜索。

高三数学解析三轮复习学生版Word下载.docx

请通过计算说明理由;

(Ⅲ)某运动员按(Ⅰ)中抛物线运行,要使得此次跳水成功,他在空中调整好入水姿势时,距池边的水平距离至多应为多大?

3已知定圆圆心为A,动圆M过点,且和圆A相切,动圆的圆心M的轨迹记为C.

(Ⅰ)求曲线C的方程;

(Ⅱ)若点为曲线C上一点,探究直线与曲线C是否存在交点?

若存在则求出交点坐标,若不存在请说明理由.

4.已知点N(1,2),过点N的直线交双曲线于A、B两点,且

(1)求直线AB的方程;

(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?

为什么?

5.已知点C(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足

(1)当点P在y轴上运动时,求点M的轨迹C的方程;

(2)是否存在一个点H,使得以过H点的动直线L被轨迹C截得的线段AB为直径的圆始终过原点O。

若存在,求出这个点的坐标,若不存在说明理由。

6.如图,已知定点,动点P在y轴上运动,过点P作交x轴于点M,延长MP到N,使

⑴求动点N的轨迹C的方程;

⑵设直线与动点N的轨迹C交于A,B两点,

若若线段AB的长度满足:

,求直线的斜率的取值范围。

7.在中,点分线段所成的比为,以、所在的直线为渐近线且离心率为的双曲线恰好经过点.

⑴求双曲线的标准方程;

⑵若直线与双曲线交于不同的两点、,且、两点都在以点为圆心的同一圆上,求实数的取值范围.

8.椭圆C的中心为坐标原点O,焦点在y轴上,离心率e=,椭圆上的点到焦点的最短距离为1-e,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.

(1)求椭圆方程;

(2)点P是椭圆上一点,求的最值;

(3)若,求m的取值范围.

9.已知正方形的外接圆方程为,A、B、C、D按逆时针方向排列,正方形一边CD所在直线的方向向量为(3,1).

(1)求正方形对角线AC与BD所在直线的方程;

(2)若顶点在原点,焦点在轴上的抛物线E经过正方形在x轴上方的两个顶点A、B,求抛物线E的方程.

解析几何训练题答案

解:

以拱桥的顶点为原点,建立坐标系如图,

设抛物线方程为,

取点A(4,-2)代入方程得p=4,

所以抛物方程为

故当水面上升1米时,即y=-1

此时,则水宽度为

.解:

(Ⅰ)由题设可设抛物线方程为,且

∴;

∴且,得且

∴,所以解析式为:

(Ⅱ)当运动员在空中距池边的水平距离为米时,即时,

所以此时运动员距水面距离为,故此次跳水会出现失误

(Ⅲ)设要使跳水成功,调整好入水姿势时,距池边的水平距离为,

则.

∴,即∴

所以运动员此时距池边的水平距离最大为米。

解:

(Ⅰ)圆A的圆心为,

设动圆M的圆心为

由|AB|=,可知点B在圆A内,从而圆M内切于圆A,故|MA|=r1-r2,

即|MA|+|MB|=4,

所以,点M的轨迹是以A,B为焦点的椭圆,设椭圆方程为,

故曲线C的方程为

(Ⅱ)当,

消去①

由点为曲线C上一点,

于是方程①可以化简为解得,

综上,直线l与曲线C存在唯一的一个交点,交点为.……………14分

4.

(1)设直线AB:

代入得

(*)

令A(x1,y1),B(x2,y2),则x1、x2是方程的两根

∴且

∵∴N是AB的中点∴

∴k=1∴AB方程为:

y=x+1

(2)将k=1代入方程(*)得或

由得,

∴,

∵∴CD垂直平分AB∴CD所在直线方程为

即代入双曲线方程整理得

令,及CD中点

则,,∴,

|CD|=,

,即A、B、C、D到M距离相等

∴A、B、C、D四点共圆.

(1)设M(x,y),P(0,t),Q(s,0)

则由得3s—t2=0………………①

又由得

,……………………②

把②代入①得=0,即y2=4x,又x≠0

∴点M的轨迹方程为:

y2=4x(x≠0)

(2)如图示,假设存在点H,满足题意,则

设,则由可得

解得

则直线AB的方程为:

即把代入,化简得

令y=0代入得x=4,∴动直线AB过定点(4,0)

答,存在点H(4,0),满足题意。

(1)设动点则直线的方程为,令。

是MN的中点,,故,消去得N的轨迹C的方程为.

(2)直线的方程为,直线与抛物线的交点坐标分别为,由得,

又由得

由可得,解得的取值范围是

(1)因为双曲线离心率为,所以可设双曲线的标准方程

由此可得渐近线的斜率从而,又因为点分线段所成的比为,所以,将点的坐标代入双曲线方程的,

所以双曲线的方程为.

(2)设线段的中点为.

则且①

由韦达定理的由题意知,

所以②

由①、②得或

(1)设C:

+=1(a>

b>

0),设c>

0,c2=a2-b2,由条件知a-c=1-,=,

∴a=1,b=c=,

故C的方程为:

y2+=1 

(2)设2x2=sin2θ,y2=cos2θ,=…

(3)由=λ得-=λ(-),(1+λ)=+λ,

∴λ+1=4,λ=3 

设l与椭圆C交点为A(x1,y1),B(x2,y2)

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>

0(*)

x1+x2=,x1x2= …

∵=3∴-x1=3x2∴

消去x2,得3(x1+x2)2+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2-k2-2=0 

m2=时,上式不成立;

m2≠时,k2=,因λ=3∴k≠0∴k2=>

0,

∴-1<

m<

-或<

1容易验证k2>

2m2-2成立,所以(*)成立

即所求m的取值范围为(-1,-)∪(,1)

(1)由(x-12)2+y2=144-a(a<

144),可知圆心M的坐标为(12,0),

依题意,∠ABM=∠BAM=,kAB=,设MA、MB的斜率k.

则且,

解得=2,=-.

∴所求BD方程为x+2y-12=0,AC方程为2x-y-24=0.

(2)设MB、MA的倾斜角分别为θ1,θ2,则tanθ1=2,tanθ2=-,

设圆半径为r,则A(12+),B(12-,),

再设抛物线方程为y2=2px(p>0),由于A,B两点在抛物线上,

∴∴r=4,p=2.

得抛物线方程为y2=4x.w.w.w.k.s.5.u.c.o.m

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 生产经营管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1