聚酰胺酸碳纤维复合薄膜Word文件下载.docx
《聚酰胺酸碳纤维复合薄膜Word文件下载.docx》由会员分享,可在线阅读,更多相关《聚酰胺酸碳纤维复合薄膜Word文件下载.docx(26页珍藏版)》请在冰豆网上搜索。
其主要性能如下:
(1)优异的耐高温性能,对于全芳香聚酰亚胺,其开始分解温度一般都在500℃左右,是热稳定性能最高的品种之一;
(2)可耐极低温,在-269℃的液态氮中仍不会脆裂;
(3)良好的机械性能,未填充的塑料的抗张强度都在100MPa以上,作为工程塑料,弹性模量通常为3~4GPa,纤维可达200GPa;
(4)可以利用碱性水解回收二胺和二酐;
(5)低热膨胀系数;
高耐辐照性能;
很好的介电性能,介电常数为3.4左右;
(6)良好的自熄性,发烟率低;
(7)极高的真空下放气量很少;
(8)无毒可用来制餐具或医疗器具,经得起千次消毒,某些聚酰亚胺具有很好的生物相容性等等。
由于上述聚酰亚胺性能和合成化学上的特点,使其具有广阔的应用,塑料、复合材料、薄膜、胶粘剂、纤维、泡沫、液晶取向剂、分离膜、光刻胶等,聚酰亚胺在每一个应用领域都显示了其突出的性能,在许多领域已成为不可替代的材料[3]。
1.1.2国内外发展状况
20世纪60年代初杜邦公司推出的Kapton聚酰亚胺薄膜(PMDA-ODA型),它具有优良的机械、电、热性能,被广泛应用于电工、微电子和机械化工等行业;
又由于它良好的耐辐射性,在航空、航天等尖端技术领域也得到应用。
自1969年由法国Rhone-Poulene公司双马来酰亚胺树脂研制成功以来,美国、英国、德国、日本和中国等国家都相继进行了研究开发。
美国国家航空航天局(NASA)成功研制了当前具有代表性的PMR热固性聚酰亚胺树脂PMR-15。
2006年孙自淑,合成出一系列可溶于强极性溶剂、特性粘数在0.675~1.08dL/g之间的光敏聚酰亚胺材料[3]。
2008年美国GE塑料集团推出Extem系列热塑性聚酰亚胺(TPI)树脂,这是一种新型的无定形聚合物,性能卓越,可免除某些半结晶材料、酰亚胺类热固性塑料和其它无定形热塑性塑料的缺点。
此外,Extem树脂而具有内在的阻燃特性,用卤系阻燃剂。
目前中科院长春应化所开发了一种新的聚酰亚胺合成工艺,开辟了一条新的氯代苯酐合成聚酰亚胺反应途径。
我国对聚酰亚胺的研究开发始于1962年,目前研究开发已形成了合理的结构和布局,生产能力已达700t/d。
随着我国航空、航天、电器、电子工业和汽车工业的发展,聚酰亚胺行业也将有较大的发展[18]。
中国科学院化学研究所专门从事PMR聚酰亚胺的研究开发,中国科学院化学研究所研制的短纤维和颗粒增强聚酰亚胺复合材料是以PMR型304-KH热固性聚酰亚胺为基体的树脂,其具有优良的力学性能、耐腐蚀性能、抗辐射性能、自润滑性能、耐磨耗性能、耐高温氧化性能和加工性[7]。
1.1.3聚酰亚胺的改性研究
聚酰亚胺分子主链上一般含有苯环和酰亚胺环结构,由于电子极化和结晶性,致使聚酰亚胺存在较强的分子链间作用,引起聚酰亚胺分子链紧密堆积,从而导致聚酰亚胺存在着以下缺点:
(1)传统的聚酰亚胺不溶又不熔,难以加工;
(2)制成的薄膜用于微电子工业尚存在降低线膨胀系数与机械强度难以兼顾,用于光通信行业则存在透明性差的问题,影响使用效果;
(3)粘结性能不理想;
(4)固化温度太高,合成工业要求高。
与此同时,由于原材料价格昂贵,生产成本居高不下,且合成的中间产物聚酰胺酸遇水极易水解,性能不稳定,需低温冷藏,难以运输、保存。
为解决这些问题并不断开发聚酰亚胺新的性能及应用领域,人们进行了多方面的研究探索。
目前,对聚酰亚胺改性的研究主要集中在以下几个方面:
(1)合成方法的改性;
(2)结构改性。
主要是在聚酰亚胺主链引入硅、氟等柔性结构单元;
在侧链上引入功能型侧基,引入扭曲和非平面结构。
(3)复合改性。
包括聚酰亚胺与其它高分子材料的复合和聚酰亚胺与无机材料的复合两部分。
无机物具有高强度、高刚性、高硬度而适于作为结构材料,无机物和聚酰亚胺复合,可降低聚酰亚胺的热膨胀系数,提高物理机械性能,改善成型加工性[10]。
随着有机-无机填料复合材料的研究热潮,聚酰亚胺/碳纤维复合材料已经成为人们的一个研究热点。
1.1.4展望
聚酰亚胺作为很有前途的高分子材料已经得到充分的认识,在绝缘材料和结构材料方面的应用正不断扩大。
在功能材料方面正崭露头角,其潜力仍在发掘中。
但在40年之后仍为成为最大的品种,主要原因是,与其他聚合物相比成本还是太高,因此今后聚酰亚胺研究的主要方向之一仍应是在单体合成及聚合方法上寻找降低成本的途径[1]。
(1)单体合成:
聚酰亚胺的单体式二胺和二酐,二胺的合成方法比较成熟,而二酐虽能有各种方法合成,但价格比较昂贵中国科学院长春应用化学研究所开发的由邻二甲苯氯代氧化再经异构体分离可以得到高纯度的4-氯代苯酐和3-氯代苯酐,以这两种化合物为原料可以得到一系列的二酐,降低成本的可能性很大,是一条有价值的合成路线。
(2)聚合工艺:
目前所用的目前使用的二部法、一步法工艺都使用高沸点溶剂,非质子极性溶剂价格较高还难以除尽,最后都需要高温处理。
PMR法使用的是廉价的类剂。
二酐和二酐还可以直接在挤出机上聚合造粒,不再需要溶剂,大大提高了效率用氯代苯直接和二胺、双酚、硫化钠或单质硫聚合得到的聚酰亚胺是最经济的合成路线。
(3)加工:
聚酰亚胺应用面如此之广,加工也是多种多样的,如高均匀度成膜、纺丝、气相沉积、亚微米级光刻、深度直接刻蚀、激光精细加工、纳米级杂化技术等。
随着合成技术和加工技术的进一步提高和成本的大幅度降低,具有优越性能的聚酰亚胺必将在未来的材料领域中显示其更为突出的作用。
1.2碳纤维概述
碳纤维是一种新型非金属工程材料,它县有高强度、高模量、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热瞄胀系数小等优异性能,因此发展迅速。
碳纤维作为增强科被广泛地用来制造复合材料,是宇航、导弹、火箭、飞机、汽车、化工、机械、纺织、医疗及体育器材中的先进材料[17]。
碳纤维(CF)增强的聚酰亚胺树脂基复合材料具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、使用温度范围宽等优异性能,在航空航天飞行器、化工医药、纺织工业、汽车工业以及精密机械等领域中,金属材料或其他工程材料无法满足要求的情况下,都可使用聚酰亚胺复合材料[11]。
由于碳纤维表面有很多空隙、凹槽、杂质等,对制成碳纤维复合材料的质量带来很大影响。
分析碳纤维的化学组成,其主要由碳和少量的氮、氧、氢等元素组成。
未经表面处理的碳纤维其表面羟基、羰基等极性基团的含量很少,不利于其与基体树脂的粘结。
碳纤维的类石墨结构决定了其表面呈化学惰性,不易被基体树脂浸润及发生化学反应,与基体树脂的粘结性能差,表现为CFRP的偏轴强度较低。
特别是碳纤维自身的机械强度较高,但其机械强度在复合材料中未得到充分体现。
因此,改善碳纤维的表面性能已成为提高碳纤维复合材料品质的关键[17]。
目前常用的表面处理方法,都是在碳纤维表面发生一系列物理、化学反应,增加其表面形态的复杂化和极性基团的含量,从而提高碳纤维与基体树脂的界面性能,以实现提高复合材料整体力学性能为最终目的。
常用的碳纤维表面处理方法[11]有:
气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法、表面涂层改性法等。
也有采用两种或两种以上表面处理法,先后或同时对碳纤维进行表面处理,称之为复合表面处理法。
以下对其简单介绍:
(1)气相氧化法:
气相氧化法是将碳纤维暴露在气相氧化剂(如空气、O3等)中,在加温、加催化剂等特殊条件下使其表面氧化生成一些活性基团(如羟基和羧基)。
经气相氧化法处理的碳纤维所制成的CFRP,弯曲强度、弯曲模量、界面剪切强度和层间剪切强度等力学性能均可得到有效提高,但材料的冲击强度降低较大。
此法按氧化剂的不同,通常分为空气氧化法和臭氧氧化法。
(2)液相氧化法:
液相氧化法是采用液相介质对碳纤维表面进行氧化的方法。
常用的液相介质有浓硝酸、混合酸和强氧化剂等。
最常见的液相氧化剂是浓硝酸,浓度一般在60%-70%。
浓度过高则纤维在氧化过程中被强酸腐蚀,强度损失较大,导致CFRP的层间剪切强度提高不显著。
研究表明[17]:
用强氧化剂溶液氧化,对纤维本身强度损伤不大,但氧化效果不显著。
液相氧化的处理时间和氧化温度也会对处理效果产生显著影响。
液相氧化法相比气相氧化法较为温和,一般不使纤维产生过多的起坑和裂解,但是其处理时间较长。
(3)阳极氧化法:
阳极氧化法,又称电化学氧化表面处理,是把碳纤维作为电解池的阳极、石墨作为阴极,在电解水的过程中利用阳极生成的“氧”,氧化碳纤维表面的碳及其含氧官能团,将其先氧化成羟基,之后逐步氧化成酮基、羧基和CO2的过程。
要求水的纯度高,如果水中有杂质,其负离子电极位低于氢氧根负离子的电极位,则阳极得不到氧气;
还要求正离子电极位低于氢正离子电极位,以保证阴极只有放氢反应;
此外电极必须是惰性的,不参加电化反应。
(4)等离子体氧化法:
等离子体是具有足够数量而电荷数近似相等的正负带电粒子的物质聚集态。
用等离子体氧化法对纤维表面进行改性处理,通常是指利用非聚合性气体对材料表面进行物理和化学作用的过程。
(5)表面涂层改性法
表面涂层改性法的原理,是将某种聚合物涂覆在碳纤维表面,改变复合材料界面层的结构与性能,使界面极性等相适应以提高界面粘结强度,同时提供一个可消除界面内应力的可塑界面层。
(6)复合表面处理法:
复合表面处理是指通过几种普通表面处理法先后处理碳纤维,集各处理方法优点于一体的处理方法。
目前最常见的复合表面处理法是气液双效法。
该法将补强和氧化相结合,先用液相涂层后用气相氧化,使碳纤维的自身抗拉强度和复合材料的层间剪切强度均得到提高。
其实质是使涂层达到填充纤维表面空隙裂纹的效果,从而提高碳纤维抗拉强度;
同时涂层液在纤维表面干燥除去溶剂后生成薄膜,氧化在涂层薄膜表面进行,达到引入极性基团的效果。
2实验部分
2.1原料及仪器
主要实验原料实验设备及仪器分别见表2.1、表2.2。
表2.1主要实验原料及生产厂家
Table2.1mainexperimentrawmaterialandproductionmanufacturers
化学名称(缩写)
生产厂家
均苯四羧酸二酐(PMDA)
廊坊格瑞泰化工有限公司
4,4’-二氨基二苯醚(ODA)
上海邦成有限公司
N-甲基吡咯烷酮(NMP)
濮阳迈奇科技有限公司
碳纤维
中科院山西煤化研究所
浓硝酸(HNO3)(分析纯)
西陇化工股份有限公司
表2.2主要设备及其型号、生产厂家
Table2.2mainequipmentanditsmodel,productionmanufacturers
仪器
型号
制造厂家
精密电动搅拌器
威尔JJ-1型
苏州威尔实验限公司
真空气氛箱式电炉
CQ-210E
洛阳纯青炉业有限司
电热鼓风干燥箱
DHG-9030A
上海一恒科技有限司
热失重仪
HCT-1
北京恒久科学仪器厂
偏光显微镜
上海蔡康光学有限公司
XPR-500D
数字涂层测厚仪