透射比与吸光度Word下载.docx

上传人:b****1 文档编号:14069512 上传时间:2022-10-18 格式:DOCX 页数:18 大小:65.29KB
下载 相关 举报
透射比与吸光度Word下载.docx_第1页
第1页 / 共18页
透射比与吸光度Word下载.docx_第2页
第2页 / 共18页
透射比与吸光度Word下载.docx_第3页
第3页 / 共18页
透射比与吸光度Word下载.docx_第4页
第4页 / 共18页
透射比与吸光度Word下载.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

透射比与吸光度Word下载.docx

《透射比与吸光度Word下载.docx》由会员分享,可在线阅读,更多相关《透射比与吸光度Word下载.docx(18页珍藏版)》请在冰豆网上搜索。

透射比与吸光度Word下载.docx

T及A都是表示物质对光吸收程度的一种量度,透射比常以百分率表示,称为百分透射比,T%;

吸光度A为一个无因次的量,两者可通过上式互相换算、

朗伯比耳定律

朗伯—比耳定律(Lambert—Beer)是光吸收的基本定律,俗称光吸收定律,是分光光度法定量分析的依据和基础。

当入射光波长一定时,溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l(吸收光程)的函数。

朗伯和比耳分别于1760年和1852年研究了这三者的定量关系。

朗伯的结论是,当用适当波长的单色光照射一固定浓度的均匀溶液时,A与l成正比,其数学式为:

A = k'

l (此即称为朗伯定律,k'为比例系数) 

而比耳的结论是,当用适当波长的单色光照射一固定液层厚度的均匀溶液时,A与C成正比,其数学表达式为:

(此即称为比耳定律,k称为比例系数)

合并上述k的数值取决于吸光物质的特性外,其单位及数值还与C和l所采纳的单位有关。

l通常采纳cm为单位,并用b表示、因此k的单位取决C采纳的单位。

ﻫ 

当C采纳重量单位时,吸收定律表达为:

(a称为吸光系数,单位为) 

当C采纳摩尔浓度时,吸收定律表达为:

(ε称摩尔吸光系数,单位为)

有时在化合物的组成不明的情况下,物质的摩尔质量不明白,因而物质的量浓度无法确定,就不能用摩尔吸光系数,而是采纳比吸光系数,其意义是指质量分数为1%的溶液,用1cm吸收池时的吸光度,这时吸光度为:

(c的质量百分浓度)

ε、a、三者的换算关系为:

(Mr为吸收物质的摩尔质量)

在吸收定律的几种表达式中,在分析上是最常用的,ε也是最常用的,有时吸收光谱的纵坐标也用ε或表示,并以最大摩尔吸光系数表示物质的吸收强度。

ε是在特定波长及外界条件下,吸光质点的一个特征常数,数值上等于吸光物质的浓度为,液层厚度为1cm时溶液的吸光度。

它是物质吸光能力的量度,可作为定性分析的参考和估计定量分析的灵敏度。

朗伯—比耳定律的推导如下:

依照量子理论,光是由光子所组成,其它能量为。

因此,吸收光的过程就是光子被吸光质点(如分子或离子)的俘获,使吸光质点能量增加而处于激发状态,光子被俘获的几率取决于吸光质点的吸光截面积。

如图13、12所示,

如有一束强度为Io的单色平行光束,垂直通过一横截面积为S的均匀溶液介质。

在吸收介质中,光的强度为Ix(Ix在光束通过介质的过程中,因光能量不断被吸收而逐渐变小),当光束通过一个特别薄的介质层db后,光强减弱了dIx,则厚度为db的吸收层对光的吸收率为量子理论表明,光束强度能够看作是单位时间内流过光子的总数,因此能够看作是光束通过吸收介质是每个光子被吸光物质吸收的平均几率。

另一方面,由于液层厚度db为无限小,因此在这个小体积单元中,因此吸光质点所占的吸收截面积之和dS与横截面积S之比也可看作为该截面上光子被吸收物质吸收的几率。

因此就有:

假如吸收介质中含有m种不同的吸光质点,而且它们之间没有相互影响,设ai为第I种吸光质点对指定波长的吸收截面积,dni为第I种吸光质点在db小体积单元之中的数目,则 

代入上式,则得到:

当光束通过液层厚度为b时,对上式两边积分,得到:

依照吸光度的定义,ﻫ截面积S是均匀介质的体积V与液层度b之比,即,代入上式,得到

式中NA为阿佛加德罗常数。

为第I种质点在均匀介质中的浓度Ci,当V的单位为L时,Ci为摩尔浓度、将0。

4343NAai合并为常数,当Ci为摩尔浓度时,该常数εi,则得到

上式表明,当一束平行单色光通过一个均匀吸收介质时,总吸光度等于吸收介质中各吸光物质吸光度之和,即吸光度具有加和性,这是进行多组分光度分析的理论基础。

当吸收介质中只含有单一种吸收物质时,上式简化为

——朗伯-比耳定律的常用表达式

与测量仪器有关的因素

从理论上来说,朗伯-比耳定律上适用于单色光(即单一波长的光),然而紫外-可见分光光度计从光源发出的连续光经单色器分光,为了满足实际测量中需要有足够光强的要求,入射光狭缝必须有一定的宽度、因此,由出射光狭缝投射到被测溶液的光束,并不是理论要求的严格单色光,而是由一小段波长范围的复合光,由分子吸收光谱是一种带状光谱,吸光物质对不同波长光的吸收能力不同,在峰值位置,吸收能力最强,ε最大,用表示,其他波长处ε都变小,因此当吸光物质吸收复合光时,表现吸光度要比理论吸光度偏低,因此导致比耳定律的负偏离、在所使用的波长范围内,吸光物质的吸光系数变化越大,这种偏离就越显著。

例如,按图13。

13 的吸收光谱,选择宽度作为入射光时,吸光系数变化较小,测量造成的偏离就比较小,若选择谱带Ⅱ的波长宽度作为入射光时,吸光系数的变化特别大,测量造成的偏离也就特别大、因此通常选择吸光物质的最大吸收波长(即吸收带峰所对应的波长)作为分析的测量波长,如此不仅保证有较高的测量灵敏度,而且此处的吸收曲线往往较为平坦,吸光系数变化比较小,比耳定律的偏离也比较小。

关于比较尖锐的吸收带,在满足一定的灵敏度要求下,尽量幸免用吸收峰的波长作为测量波长。

投射被测溶液的光束单色性(即波长范围)越差,引起的比耳偏离也越大,因此,在保证足够的光强前提下,采纳窄的入射光狭缝,以减小谱带宽度,降低比耳定律的偏离。

与样品溶液有关的因素 

当吸收物质在溶液中的浓度较高时,由于吸收质点之间的平均距离缩小,邻近质点相互的电荷分布会产生相互影响,以致于改变它们对特定辐射的吸收能力,即改变了吸光系数,导致比耳定律的偏离。

通常只有当吸光物质的浓度小于0、01的稀溶液中,吸收定律才成立。

推导吸收定律时,吸光度的加和性隐含着测定溶液中各组分之间没有相互作用的假设。

但实际上,随着浓度的增大,各组分之间甚至同组分的吸光质点之间的相互作用是不可幸免的。

例如,能够发生缔合、离解、光化学反应、互变异构及配合物配位数的变化等等,会使被测组分的吸收曲线发生明显的变化,吸收峰的位置、强度及光谱精细结构都会有所不同,从而破坏了原来的吸光度与浓度之间的函数关系,导致比耳定律的偏离、

溶剂及介质条件对吸收光谱的影响十分重要。

溶剂及介质条件(如值)经常会影响被测物理的性质和组成,影响生色团的吸收波长和吸收强度,也会导致吸收定律的偏离。

当测定溶液有胶体、乳状液或悬浮物质存在时,入射光通过溶液时,有一不忿光会因散射而损失,造成“假吸收"

使吸光度偏大,导致比耳定律得正偏离。

质点的散射强度与照射光波长的四次方成反比,因此在紫外光区测量时,散射光的影响更大。

此外,吸收定律的偏离还与溶液的折射率有关,摩尔吸光系数ε是真实摩尔吸光系数和溶液折射率的函数

当稀溶液时,n基本不变,ε也基本不变,而当浓度高时,n变大,ε变小,导致比耳定律的偏离。

主要组成部件 

ﻫ 

各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统,如图13、14 。

1。

光源(辐射源)

★对光源的要求

在仪器操作所需的光谱区域内能够发射连续辐射;

应有足够的辐射强度及良好的稳定性;

辐射能量随波长的变化应尽估计小;

光源的使用寿命长,操作方便。

★光源的种类

分光光度计中常用的光源有热辐射光源和气体放电光源两类。

前者用于可见光区,如钨灯、卤钨灯等,后者用于紫外光区,如氢灯和氘灯等、

钨灯和碘钨灯可使用的波长范围为340~2500nm、这类光源的辐射能量与施加的外加电压有关,在可见光区,辐射的能量与工作电压的4次方成正比,光电流也与灯丝电压的n次方(n>1)成正比。

因此,使用时必须严格控制灯丝电压,必要时须配备稳压装置,以保证光源的稳定。

氢灯和氘灯可使用的波长范围为160~375nm,由于受石英窗吸收的限制,通常紫外光区波长的有效范围一般为200~375nm。

灯内氢气压力为102Pa时,用稳压电源供电,放电十分稳定,光强度且恒定。

氘灯的灯管内充有氢同位素氘,其光谱分布与氢灯类似,但光强度比同功率的氢灯大3~5倍,是紫外光区应用最广泛的一种光源。

主要组成部件

ﻫ2、单色器

★ 

单色器的作用

单色器是能从光源的复合光中分出单色光的光学装置,其主要功能应该是能够产生光谱纯度高、色散率高且波长在紫外可见光区域内任意可调。

单色器的性能直截了当影响入射光的单色性,从而也影响到测定的灵敏度、选择性及校准曲线的线性关系等。

单色器的组成

单色器由入射狭缝、准光器(透镜或凹面反射镜使入射光变成平行光)、色散元件、聚焦元件和出射狭缝等几个部分组成。

其核心部分是色散元件,起分光作用。

其他光学元件中狭缝在决定单色器性能上起着重要作用,狭缝宽度过大时,谱带宽度太大,入射光单色性差,狭缝宽度过小时,又会减弱光强、

色散元件的类型

能起分光作用的色散元件主要是棱镜和光栅。

棱镜有玻璃和石英两种材料。

它们的色散原理是依据不同波长的光通过棱镜时有不同的折射率而将不同波长分开。

由于玻璃会吸收紫外光,因此玻璃棱镜只适用于350~3200nm的可见和近红外光区波长范围。

石英棱镜适用的波长范围较宽,为185~4000nm,即可用于紫外、可见、红外三个光谱区域、

光栅是利用光的衍射和干涉作用制成的。

它可用于紫外、可见和近红外光谱区域,而且在整个波长区域中具有良好的、几乎均匀一致的色散率,且具有适用波长范围宽、分辨本领高、成本低、便于保存和易于制作等优点,因此是目前用的最多的色散元件、其缺点是各级光谱会重叠而产生干扰。

ﻫ3 、吸收池ﻫ 

吸收池用于盛放分析的试样溶液,让入射光束通过。

吸收池一般有玻璃和石英两个材料做成,玻璃池只能用于可见光区,石英池可用于可见光区及紫外光区。

吸收池的大小规格从几毫米到几厘米不等,最常用的是1厘米的吸收池。

为减少光的反射损失,吸收池的光学面必须严格垂直于光束方向。

在离精度分析测定中(尤其是紫外光区尤其重要),吸收池要挑选配对,使它们的性能基本一致,因为吸收池材料本身及光学面的光学特性、以及吸收池光程长度的精确性等对吸光度的测量结果都有直截了当影响。

4、光敏检测器

检测器的作用

检测器是一种光电转换元件,是检测单色光通过溶液被吸收后透射光的强度,并把这种光信号转变为电信号的装置、

对检测器的要求

检测器应在测量的光谱范围内具有高的灵敏度;

对辐射能量的影响快、线性关系好、线性范围宽;

对不同波长的辐射响应性能相同且可靠;

有好的稳定性和低的噪音水平等。

检测器的种类

检测器有光电池、光电管和光电倍增管等、

● 

光电池

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 社交礼仪

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1