二次函数中寻找等腰三角形问题Word文件下载.docx

上传人:b****3 文档编号:13934015 上传时间:2022-10-15 格式:DOCX 页数:18 大小:186.39KB
下载 相关 举报
二次函数中寻找等腰三角形问题Word文件下载.docx_第1页
第1页 / 共18页
二次函数中寻找等腰三角形问题Word文件下载.docx_第2页
第2页 / 共18页
二次函数中寻找等腰三角形问题Word文件下载.docx_第3页
第3页 / 共18页
二次函数中寻找等腰三角形问题Word文件下载.docx_第4页
第4页 / 共18页
二次函数中寻找等腰三角形问题Word文件下载.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

二次函数中寻找等腰三角形问题Word文件下载.docx

《二次函数中寻找等腰三角形问题Word文件下载.docx》由会员分享,可在线阅读,更多相关《二次函数中寻找等腰三角形问题Word文件下载.docx(18页珍藏版)》请在冰豆网上搜索。

二次函数中寻找等腰三角形问题Word文件下载.docx

0)的图象经过点B(14,0)和C(0,—8),对称轴为x=4.

(1)求该抛物线的解析式;

(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的

速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在

某一时刻,使线段PQ被直线CD垂直平分?

若存在,请求出此时的时间t(秒)和点Q

的运动速度;

若不存在,请说明理由;

(3)在

(2)的结论下,直线x=1上是否存在点M使厶MPQ为等腰三角形?

若存在,

_2

6.在平面直角坐标系中,二次函数yaxbx2的图象与x轴交于A(-3,0),B

(1,0)两点,与y轴交于点C.

(1)求这个二次函数的关系解析式;

(2)点P是直线AC上方的抛物线上一动点,是否存在点只使厶ACP的面积最大?

存在,求出点P的坐标;

若不存在,说明理由;

(3)在平面直角坐标系中,是否存在点Q使厶BCQ是以BC为腰的等腰直角三角形?

右存在,直接写出点Q的坐标;

右不存在,说明理由;

7•如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD勺顶点A,D在抛物线上,

且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O

(1)求此抛物线的解析式.

(2)过点P作CB所在直线的垂线,垂足为点R,

1求证:

PF=PR

2是否存在点P,使得△PFR为等边三角形?

若存在,求出点P的坐标;

若不存在,请

说明理由;

③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF

的形状.

C

■F

B

O

E、

A

X

/DF

 

8.在平面直角坐标系xoy中,一块含60°

角的三角板作如图摆放,斜边AB在x轴上,

C三点的抛物

线解析式;

(2)现有与上述三角板完全一样的三角板DEF(其中/EDF=90,/DEF=60),

把顶点E放在线段

AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与

(1)中的抛物线交于第一象限的点M

1设AE=x当x为何值时,△OCOAOBC

2在①的条件下探究:

抛物线的对称轴上是否存在点P使APEM是等腰三角形,若存

在,请求点P的坐标;

若不存在,请说明理由.

9.如图1,在Rt△AOB中,/AOB=90,AO=8j3,/ABO=30.动点P在线段AB上

从点A向终点B以每秒23个单位的速度运动,设运动时间为t秒.在直线0B上取两

点MN作等边△PMN

(1)求当等边厶PMN的顶点M运动到与点0重合时t的值.

(2)求等边△PMN的边长(用t的代数式表示);

(3)如果取0B的中点D,以0D为边在Rt△AOB内部作如图2所示的矩形ODCE点C在线段AB上.设等边厶PMN和矩形ODCE重叠部分的面积为S,请求出当0<

t<

2秒时S与t的函数关系式,并求出S的最大值.

(4)在(3)中,设PN与EC的交点为R,是否存在点农使厶ODF是等腰三角形?

图2

12

10.如图,已知抛物线yx2bxc与y轴相交于C,与x轴相交于AB,点A的

2

坐标为(2,0),点C的坐标为(0,-1).

(1)求抛物线的解析式;

(2)点E是线段AC上一动点,过点E作DEIx轴于点D,连结DC,当厶DCE的面积最

大时,求点D的坐标;

(3)在直线BC上是否存在一点巳使厶ACP为以AC为腰的等腰三角形,若存在,求点

P的坐标,若不存在,说明理由.

参考答案

1.【解析】

(1)根据题意可得点C的纵坐标为3,代入直线解析式可得岀点C的横坐标,继而

也可得岀点D的坐标;

(2)由题意可得点C和点D关于抛物线的对称轴对称,从而得岀抛物线的对称轴为,再由抛物

线的顶点在直线,可得出顶点坐标为(),设出顶点式,代入点C的坐标即可得出答案.

(3)分EF=EGGF=EGGF=EF三种情况分析。

解:

⑴C(4,),D(1,);

⑵顶点(),解析式;

⑶EF=EG

GF=EG

GF=EF

3.解:

由勾股定理,得(oC+oB)+(oC+oA)=b6+aC=aB,

又•••0B=3OA=1,AB=4,•••°

C=曲,.・.点C的坐标是2'

闪〉

由题意可设抛物线的函数解析式为y=a(x-1)(x+3),把C(0,、彳)代入

fl=,

函数解析式得3

y=-—仪•1/广上丰3丿

所以,抛物线的函数解析式为3

(2)截得三条线段的数量关系为KD=DE=EF

理由如下:

可求得直麓1】的解析式再y=+直建1:

的解析式丸

y二乜;

抛韧無的对称轴为直线EU由此可求得豈K的坐标酋(7洛),点D的坐标为(-1,坯),点E的坐标为(-1,点F的坐标肯【70)—

C-(-It—

(3)当点M的坐标分别为时,△MCK为等腰三角形.

(i)连接BK交抛物线于点G,易知点G的坐标为(-2,

又•••点C的坐标为(0,•••可求得AB=BK=4且/ABK=60,即△ABK为正三角形,

•••△CGK为正三角形

•••当12与抛物线交于点G,即12/AB时,符合题意,此时点

2x3

(ii)连接CD由KD=h,CK=CG=2/CKD=30,易知△KDC为等腰三角形,

•••当12过抛物线顶点D时,符合题意,此时点M2坐标为(-1,),

(iii)当点M在抛物线对称轴右边时,只有点M与点A重合时,满足CM=CK

但点ACK在同一直线上,不能构成三角形,

宀(-2,J3),(-1,埠)

综上所述,当点M的坐标分别为'

时,△MCK为等腰三角形.

4.

(1)设y=ax(x-4),把A点坐标(3,3)代入得:

a=-1,

函数的解析式为y=-x2+4x,

(2)0<

3,

(3)P的坐标是(3-.:

1+2.」)或(3+】:

1-2敖|)或(5,-5)或(4,0).

12分

(3)简单解答过程如下:

•••W.|

当m>

3时,PC=CD-PD=m—3mOC颌口,

由勾股定理得:

Op=oD+Dp=m+m(m-4)2,

1当OC=PC寸,「-.,

解得:

2当OC=O时,〔一-'

'

.T-1

m=5,m=3(舍去),

二P(5,-5);

3当PC=OP寸,m2(m-3)2=m2+m2(m-4)2,

m=4二P(4,0),

存在P的坐标是(3-.■:

1+2.一:

)或(3+二,1-2.二)或(5,-5)或(4,0).

(2)存在,理由如下:

■-X1-垂直平分珀…'

.'

AD-ACt-'

-ZADC=^ACD,

■'

■dCCL0?

在取△曲C中,dC=7^0+CC2--10>

AP=1Q.又肌尸&

,・:

QDN,卩

「・卫在^寸称轴上根据对称性可知ALFDiZ.A8DQ*&

Q为EC的中

在RtABOC中,胆"

X4■朋=2屈,二笑二届,TD、Q为ABrM的中点,-'

.

型=*卫—52

—DFQMDQF、「-皿=匹=门4尸二jW-M:

工「•『=罕=亍・二卩「=字=寧,4

(d)设F陋=./l+ir-D)=血\yj五+0X)=&

斗卩+刃,尸鸟=M

当F0FH时,诈・&

+3』二』・±

2逅,二M(l,20〉」-2西)2

胪当F4QM时,勒5土&

十旳卄比,・・・j=Y±

2』T,/.M(lT-4-F2jT>

JiJ.(W-2jT)-

3*当PI=QM时,$=-6,/-if(1,-6)^

卫帧(1—+2厲少口7-2航).-外综上所述:

存在5个M点,即

6.【解析】解:

(1由抛物线过A(-3,0),B(1,0),贝9

,解得。

•••二次函数的关系解析式为。

(2)设点P坐标为(mn),贝0。

连接PO,作PMLx轴于MPN丄y轴于N。

PM=,,A0=3

当时,,所以OC=2

111

tv0,•函数有最大值,当时,有最大值。

此时。

•存在点,使△ACP的面积最大。

(3)存在。

7.【解析】解:

(1)v抛物线的顶点为坐标原点,•••A、D关于抛物线的对称轴对称

•/E是AB的中点,•O是矩形ABCD寸角线的交点

又•••B(2,1),二A(2,—1)、D(-2,—1)。

•••抛物线的顶点为(0,0),二可设其解析式为:

y=ax,则有:

4a=—1,a=—

•抛物线的解析式为:

y=-x2。

(2)①证明:

由抛物线的解析式知:

P(a,—a),而R(a,1)、F(0,—1),

则:

PF=

PR=,

•PF=PR

②•••RF=,「.若厶PFR为等边三角形,则由①得RF=PF=PR得:

=,即:

a4—8a2—48=0,得:

a2=—4(舍去),a2=12。

2

•a=±

2,—a=—3。

•••存在符合条件的P点,坐标为(2,—3)、(-2,—3)。

③同①可证得:

QF=QS

在等腰△SQF中,/1=(180°

-/SQF)。

同理,在等腰RPF中,/2=(180°

—/RPF)。

•/QSLBCPR!

BC,•QS//PR,/SQP/RPF=180

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1