大型基坑案例Word格式.docx

上传人:b****4 文档编号:13614053 上传时间:2022-10-12 格式:DOCX 页数:15 大小:5.89MB
下载 相关 举报
大型基坑案例Word格式.docx_第1页
第1页 / 共15页
大型基坑案例Word格式.docx_第2页
第2页 / 共15页
大型基坑案例Word格式.docx_第3页
第3页 / 共15页
大型基坑案例Word格式.docx_第4页
第4页 / 共15页
大型基坑案例Word格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

大型基坑案例Word格式.docx

《大型基坑案例Word格式.docx》由会员分享,可在线阅读,更多相关《大型基坑案例Word格式.docx(15页珍藏版)》请在冰豆网上搜索。

大型基坑案例Word格式.docx

 

深基坑工程就是最近30多年中迅速发展起来得一个领域。

以前得几十年中,由于建筑物得高度不高,基础得埋置深度很浅,很少使用地下室,基坑得开挖一般仅作为施工单位得施工措施,最多用钢板桩解决问题,没有专门得设计,也并没有引起工程界太多得关注。

近30多年来,由于高层建筑、地下空间得发展,深基坑工程得规模之大、深度之深,成为岩土工程中事故最为频繁得领域,给岩土工程界提出了许多技术难题,当前,深基坑工程已成为国内外岩土工程中发展最为活跃得领域之一.

住房与城乡建设部《危险性较大得分部分项工程安全管理办法得通知》规定:

深基坑工程指开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件与周围环境及地下管线特别复杂得基坑土方开挖、支护、降水工程.

当前我国各大城市深基坑工程主要突出了以下四个特点:

①深基坑距离周边建筑越来越近

由于城市得改造与开发,基坑四周往往紧贴各种重要得建筑物,如轨道交通设施、地下管线、隧道、天然地基民宅、大型建筑物等,设计或施工不当,均会对周边建筑造成不利影响。

②深基坑工程越来越深

随着地下空间得开发利用,基坑越来越深,对设计理论与施工技术都提出得更难得要求。

如无锡恒隆广场基坑深近27m,上海中心深基坑达30m,均已挖入了承压水层。

右图为宁波嘉与中心二期项目基坑,平均开挖深度为18、3m,最大挖深为25、9m,整体为三层地下室布局,局部有夹层。

③基坑规模与尺寸越来越大

上海招商银行信用卡中心工程基坑面积达81000m2,无锡恒隆广场基坑面积35000m2。

这类基坑在支护结构得设计、施工中,特别就是支撑系统得布置、围护墙得位移及坑底隆起得控制均有相当得难度.

④施工场地越来越紧凑

市区大规模得改造与开发,其中不少以土地出让形式吸引外资、内资开发,为充分利用土地资源,常要求建筑物地下室做足红线.场地可用空间狭小大大得增加了施工难度,这必须通过有效得资源整合才能顺利实现。

图为宁波春江花城二期项目基坑全景,地下室距离外墙用地红线仅3、5米。

深基坑工程安全质量问题类型很多,成因也较为复杂。

在水土压力作用下,支护结构可能发生破坏,支护结构型式不同,破坏形式也有差异。

渗流可能引起流土、流砂、突涌,造成破坏.围护结构变形过大及地下水流失,引起周围建筑物及地下管线破坏也属基坑工程事故。

粗略地划分,深基坑工程事故形式可分为以下三类:

在深基坑工程施工过程中,会对周围土体有不同程度得扰动,一个重要影响表现为引起周围地表不均匀下沉,从而影响周围建筑、构筑物及地下管线得正常使用,严重得造成工程事故。

引起周围地表沉降得因素大体有:

基坑墙体变位;

基坑回弹、隆起;

井点降水引起得地层固结;

抽水造成砂土损失、管涌流砂等.

因此如何预测与减小施工引起得地面沉降已成为深基坑工程界亟需解决得难点问题。

①基坑围护体系折断事故

主要就是由于施工抢进度,超量挖土,支撑架设跟不上,就是围护体系缺少大量设计上必须得支撑,或者由于施工单位不按图施工,抱侥幸心理,少加支撑,致使围护体系应力过大而折断或支撑轴力过大而破坏或产生大变形。

下图为2008年苏州某深基坑事故。

图为2008年杭州地铁深基坑施工中地下连续墙折断破坏

2011年杭州某深基坑围护桩折断事故

②基坑围护体整体失稳事故ﻫ 

深基坑开挖后,土体沿围护墙体下形成得圆弧滑面或软弱夹层发生整体滑动失稳得破坏。

下图为某深基坑围护整体失稳破坏事故。

③基坑围护踢脚破坏ﻫ 

由于深基坑围护墙体插入基坑底部深度较小,同时由于底部土体强度较低,从而发生围护墙底向基坑内发生较大得“踢脚”变形,同时引起坑内土体隆起.下图为某深基坑发生“踢脚”破坏。

④坑内滑坡导致基坑内撑失稳

在火车站、地铁车站等长条形深基坑内区放坡挖土时,由于放坡较陡、降雨或其她原因引起得滑坡可能冲毁基坑内先期施工得支撑及立柱,导致基坑破坏。

下侧两图为2009年杭州地铁1号线凤起路站坑内土体滑坡引起得支撑体系破坏。

①基坑壁流土破坏ﻫ 

在饱与含水地层(特别就是有砂层、粉砂层或者其她得夹层等透水性较好得地层),由于围护墙得止水效果不好或止水结构失效,致使大量得水夹带砂粒涌入基坑,严重得水土流失会造成地面塌陷。

下图为某深基坑止水帷幕渗漏、桩间流土事故.

②基坑底突涌破坏

由于对承压水得降水不当,在隔水层中开挖基坑时,当基底以下承压含水层得水头压力冲破基坑底部土层,将导致坑底突涌破坏。

下图为上海某深基坑坑底内发生承压水突涌。

③基坑底管涌破坏

在砂层或粉砂底层中开挖基坑时,在不打井点或井点失效后,会产生冒水翻砂(即管涌),严重时会导致基坑失稳。

下图为湖南浯溪水电站二期深基坑出现管涌。

以上深基坑工程安全质量问题,只就是从某一种形式上表现了基坑破坏,实际上深基坑工程事故发生得原因往往就是多方面得,具有复杂性,深基坑工程事故得表现形式往往具有多样性.

海珠城广场基坑周长约340米,原设计地下室4层,基坑开挖深度为17米。

该基坑东侧为江南大道,江南大道下为广州地铁二号线,二号线隧道结构边缘与本基坑东侧支护结构距离为5、7米;

基坑西侧、北侧邻近河涌,北面河涌范围为22米宽得渠箱;

基坑南侧东部距离海员宾馆20米,海员宾馆楼高7层,采用φ340锤击灌注桩基础;

基坑南侧两部距离隔山一号楼20米,楼高7层,基础也采用φ340锤击灌注桩。

该工程地质情况从上至下依次为:

填土层,厚0、7~3、6米;

淤泥质土层,层厚0、5~2、9米;

细砂层,个别孔揭露,层厚0、5~1、3米;

强风化泥岩,顶面埋深为2、8~5、7米,层厚0、3米;

中风化泥岩,埋深3、6~7、2米,层厚1、5~16、7米;

微风化岩,埋深6、0~20、2米,层厚1、8~12、84米。

由于本工程岩层埋深较浅,因此,原设计支护方案如下:

基坑东侧、基坑南侧偏东34米、北侧偏东30米范围内,上部5、2米采用喷锚支护方案,下部采用挖孔桩结合钢管内支撑得方案,挖孔桩底标高为▽—20、0米.

基坑西侧上部采用挖孔桩结合预应力锚索方案,下部采用喷锚支护方案.

基坑南侧、北侧得剩余部分,采用喷锚支护方案.后由于±

0、00标高调整,后实际基坑开挖深度调整为15、3米。

本基坑在2002年10月31日开始施工,至2003年7月施工至设计深度15、3米,后由于上部结构重新调整,地下室从原设计4层改为5层,地下室开挖深度从原设计得15、3米增至19、6米.由于地下室周边地梁高为0、7米.因此,实际基坑开挖深度为20、3米,比原设计挖孔桩桩底深0、3米。

新得基坑设计方案确定后,2004年11月重新开始从地下4层基坑底往地下5层施工,至2005年7月21日上午,基坑南侧东部桩加钢支撑部分最大位移约为100px,其中从7月20日至7月21日一天增大45px,基坑南侧中部喷锚支护部分,最大位移约为375px。

2005年7月21日12时左右,在广州海珠区江南大道南珠城海广场深基坑发生滑坡,导致3人死亡,4人受伤,地铁二号线停运近一天,7层得海员宾馆倒塌,多加商铺失火被焚,一栋7层居民楼受损,三栋居民被迫转移。

下面就是一些事故照片。

(1)本基坑原设计深度只有16、2米,而实际开挖深度为20、3米,超深4、1米,造成原支护桩成为吊脚桩,尽管后来设计有所变更,但对已施工得围护桩与锚索等构件已无法调整,成为隐患。

(2)从地质勘察资料反应与实际开挖揭露,南边地层向坑内倾斜,并存在软弱透水夹层,随着开挖深度增大,导致深部滑动。

(3)本基坑施工时间长达2年9个月,基坑暴露时间大大超过临时支护为一年得时间,导致开挖地层得软化渗透水与已施工构件得锈蚀与锚索预应力得损失,强度降低,甚至失效。

(4)事故发生前在南边坑顶因施工而造成东段严重超载,成为了基坑滑坡得导火线。

(5)从施工纪要与现场监测结果分析,在基坑滑坡前已有明显预兆,但没有引起应有得重视,更没有采取针对性得措施,也就是导致事故得原因之一.

事故调查结果与处理结果与2005年9月20日在广州日报公布:

对7个建设责任主体及其20名责任人给予行政处罚或处分,其中7名主要负责人因涉嫌触犯刑法被司法机关依法逮捕;

对事故发生负有监管责任得14名行政人员给予降级或降级以下得行政处分与责令作出深刻检讨,并责成相关单位对市政府作出书面检查.

ﻫ 

(1)设计、施工安全性报告控制:

初步设计阶段施工单位应制定深基坑设计、施工安全性报告.安全性报告应通过专家评审.

(2)支护结构与土体加固工程施工安全质量控制:

地下连续墙、SMW工法、钢或混凝土支撑等基坑支护结构与土体加固施工中涉及安全性能得重要工序得施工质量应满足法规标准与设计要求。

(3)安全管理人员监管:

作业时,施工单位专职安全生产管理人员应在现场进行管理。

(4)基坑临边防护:

基坑四周、操作平台等临边处应设置防护栏杆,应牢固可靠。

(5)立体交叉作业控制:

当应用土代模浇筑混凝土支撑,支撑下得土方开挖后,施工单位应及时清除支撑下粘结得土石。

上下层立体交叉作业时,应设置隔离设施.

(6)施工进度控制:

施工单位报送得进度计划应满足基坑安全性要求。

通过该事故,可得出以下深基坑事故防范经验:

(1)对深基坑工程特点应有深刻得认识,基坑工程时空效应强,环境效应明显,挖土顺序、挖土速度与支撑速度对基坑围护体系受 

力与稳定性具有很大影响。

施工应严格按经审查得施工组织设计进行。

应及时安装支撑(钢支撑),及时分段分块浇筑垫层与底板,严禁超挖。

深基坑围护结构设计应方便施工,深基坑工程施工应有合理工期。

(2)基坑工程不确定因素多,应实施信息化施工.ﻫ 

监测点设置应符合规范那与设计要求.监测单位应认识科学测试,及时如实报告各项监测数据.项目各方要重视基坑得监测工作,通过监测施工过程中得土体位移、围护结构内力等指标得变化,及时发现隐患,采取相应得补救措施,确保基坑安全。

(3)有多道内支撑得基坑围护体系应加强支撑体系整体稳定性。

考虑到基坑工程施工中,第一道支撑可能产生拉应力,建议第一道支撑采用钢筋混凝土支撑。

对钢支撑体系应改进钢支撑节点连接型式,加强节点构造措施,确保连接节点满足强度及刚度要求。

施工过程中应合理施加钢管支撑预应力。

应明确钢支撑得质量检查及安装验收要求,加强对检查与验收工作得监督管理。

(4)岩土工程稳定分析中,要合理选用分析方法。

抗剪强度指标得选用,与其测定方法、安全系数得确定要协调一致。

在土工参数选用时应综合判断,并结合地区工程经验,合理选用。

作为施工方,在有条件得情况下应对设计进行适当得验算,在此基础上提出合理化建议,优化施工组织设计,确保深基坑得安全与实现效益最大化。

(5)施工中应加强基坑工程

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1