IC测试基本原理Word文档格式.docx

上传人:b****1 文档编号:13495343 上传时间:2022-10-11 格式:DOCX 页数:10 大小:117.63KB
下载 相关 举报
IC测试基本原理Word文档格式.docx_第1页
第1页 / 共10页
IC测试基本原理Word文档格式.docx_第2页
第2页 / 共10页
IC测试基本原理Word文档格式.docx_第3页
第3页 / 共10页
IC测试基本原理Word文档格式.docx_第4页
第4页 / 共10页
IC测试基本原理Word文档格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

IC测试基本原理Word文档格式.docx

《IC测试基本原理Word文档格式.docx》由会员分享,可在线阅读,更多相关《IC测试基本原理Word文档格式.docx(10页珍藏版)》请在冰豆网上搜索。

IC测试基本原理Word文档格式.docx

·

特征分析:

保证设计的正确性,决定器件的性能参数;

产品测试:

确保器件的规格和功能正确的前提下减少测试时间提高本钱效率 

可靠性测试:

保证器件能在规定的年限之内能正确工作;

来料检查:

保证在系统生产过程中所有使用的器件都能满足它本身规格书要求,并能正确工作。

制造阶段的测试包括:

圆片测试:

在圆片测试中,要让测试仪管脚与器件尽可能地靠近,保证电缆,测试仪和器件之间的阻抗匹配,以便于时序调整和矫正。

因而探针卡的阻抗匹配和延时问题必须加以考虑。

封装测试:

器件插座和测试头之间的电线引起的电感是芯片载体与封装测试的一个首要的考虑因素。

特征分析测试,包括门临界电压、多域临界电压、旁路电容、金属场临界电压、多层间电阻、金属多点接触电阻、扩散层电阻、接触电阻以与FET寄生漏电等参数测试。

通常的工艺种类包括:

TTL 

ECL 

CMOS 

NMOS 

Others 

通常的测试项目种类:

功能测试:

真值表,算法向量生成。

直流参数测试:

开路/短路测试,输出驱动电流测试,漏电电源测试,电源电流测试,转换电平测试等。

交流参数测试:

传输延迟测试,建立保持时间测试,功能速度测试,存取时间测试,刷新/等待时间测试,上升/下降时间测试 

第二节 

直流参数测试 

直流测试是基于欧姆定律的用来确定器件电参数的稳态测试方法。

比如,漏电流测试就是在输入管脚施加电压,这使输入管脚与电源或地之间的电阻上有电流通过,然后测量其该管脚电流的测试。

输出驱动电流测试就是在输出管脚上施加一定电流,然后测量该管脚与地或电源之间的电压差。

通常的DC测试包括 

:

接触测试〔短路-开路〕:

这项测试保证测试接口与器件正常连接。

接触测试通过测量输入输出管脚上保护二极管的自然压降来确定连接性。

二级管上如果施加一个适当的正向偏置电流,二级管的压降将是0.7V左右,因此接触测试就可以由以下步骤来完成:

1.所有管脚设为0V, 

〞I〞, 

〞I〞引起的电压, 

4.如果该电压小于0.1V,说明管脚短路, 

5.如果电压大于1.0V,说明该管脚开路, 

6.如果电压在0.1V和1.0V之间,说明该管脚正常连接。

漏电〔IIL,IIH,IOZ〕:

理想条件下,可以认为输入与三态输出管脚和地之间是开路的。

但实际情况,它们之间为高电阻状态。

它们之间的最大的电流就称为漏电流,或分别称为输入漏电流和输出三态漏电流。

漏电流一般是由于器件内部和输入管脚之间的绝缘氧化膜在生产过程中太薄引起的,形成一种类似于短路的情形,导致电流通过。

三态输出漏电IOZ是当管脚状态为输出高阻状态时,在输出管脚使用VCC〔VDD〕或GND〔VSS〕驱动时测量得到的电流。

三态输出漏电流的测试和输入漏电测试类似,不同的是待测器件必须被设置为三态输出状态 

转换电平(VIL,VIH)。

转换电平测量用来决定器件工作时VIL和VIH的实际值。

(VIL是器件输入管脚从高变换到低状态时所需的最大电压值,相反,VIH是输入管脚从低变换到高的时候所需的最小电压值)。

这些参数通常是通过反复运行常用的功能测试,同时升高〔VIL〕或降低〔VIH〕输入电压值来决定的。

那个导致功能测试失效的临界电压值就是转换电平。

这一参数加上保险量就是VIL或VIH规格。

保险量代表了器件的抗噪声能力。

输出驱动电流(VOL,VOH,IOL,IOH)。

输出驱动电流测试保证器件能在一定的电流负载下保持预定的输出电平。

VOL和VOH规格用来保证器件在器件允许的噪声条件下所能驱动的多个器件输入管脚的能力。

电源消耗〔ICC,IDD,IEE〕。

该项测试决定器件的电源消耗规格,也就是电源管脚在规定的电压条件下的最大电流消耗。

电源消耗测试可分为静态电源消耗测试和动态电源消耗测试。

静态电源消耗测试决定器件在空闲状态下时最大的电源消耗,而动态电源消耗测试决定器件工作时的最大电源消耗。

第三节 

交流参数测试 

交流参数测试测量器件晶体管转换状态时的时序关系。

交流测试的目的是保证器件在正确的时间发生状态转换。

输入端输入指定的输入边沿,特定时间后在输出端检测预期的状态转换。

常用的交流测试有传输延迟测试,建立和保持时间测试,以与频率测试等。

传输延迟测试是指在输入端产生一个状态〔边沿〕转换和导致相应的输出端的状态〔边沿〕转换之间的延迟时间。

该时间从输入端的某一特定电压开始到输出端的某一特定电压完毕。

一些更严格的时序测试还会包括以下的这些项目:

三态转换时间测试- 

TLZ,THZ:

从输出使能关闭到输出三态完成的转换时间。

TZL,TZH:

从输出使能开始到输出有效数据的转换时间。

存储器读取时间- 

从内存单元读取数据所需的时间。

测试读取时间的步骤一般如下所示:

’0’, 

’1’, 

3.保持READ为使能状态并读取单元A的值, 

4.地址转换到单元B, 

5.转换时间就是从地址转换开始到数据变换之间的时间。

第三章芯片根底

  基于DSP的测试技术

  利用基于数字信号处理(DSP)的测试技术来测试混合信号芯片与传统的测试技术相比有许多优势。

这些优势包括:

  由于能并行地进展参数测试,所以能减少测试时间;

  由于能把各个频率的信号分量区分开来(也就是能把噪声和失真从测试频率或者其它频率分量中别离出来),所以能增加测试的精度和可重复性。

  能使用很多数据处理函数,比如说求平均数等,这对混合信号测试非常有用 

采样和重建

  采样用于把信号从连续信号(模拟信号)转换到离散信号(数字信号),重建用于实现相反的过程。

自动测试设备(ATE)依靠采样和重建给待测芯片(DUT)施加激励信号并测量它们的响应。

测试中包含了数学上的和物理上的采样和重建。

图1中说明了在测试一个音频接口芯片时用到的各种采样和重建方法。

  纯数学理论上,如果满足某些条件,连续信号在采样之后可以通过重建完全恢复到原始信号,而没有任何信号本质上的损失。

不幸的是,现实世界中总不能如此完美,实际的连续信号和离散信号之间的转换总会有信号的损失。

  我们周围物理世界上的许多信号,比如说声波、光束、温度、压力在自然界都是模拟的信号。

现今基于信号处理的电子系统都必须先把这些模拟信号转换为能与数字存储,数字传输和数学处理兼容的离散数字信号。

接下来可以把这些离散数字信号存储在计算机阵列之中用数字信号处理函数进展必要的数学处理。

采样和重建在混合信号测试中的应用 

重建是采样的反过程。

此过程中,被采样的波形(脉冲数字信号)通过一个数模转换器(DAC)和反镜象滤波器一样的硬件电路转换为连续信号波形。

重建会在各个采样点之间填补上丢失的波形。

DAC和滤波器的组合就是一个重建的过程,可以用图2所示的冲击响应p(t)来表示。

由一个数据序列重建连续时间波形

混合信号测试介绍

  最常见的混合信号芯片有:

模拟开关,它的晶体管电阻随着数字信号变化;

可编程增益放大器(PGAs),能用数字信号调节输入信号的放大倍数;

数模转换电路(D/AsorDACs);

模数转换电路(A/DsorADCs);

锁相环电路(PLLs),常用于生成高频基准时钟或者从异步数据流中恢复同步时钟。

 终端应用和考虑

  许多的应用,比如说移动,硬盘驱动器,调制解调器,马达控制器以与多媒体音频/视频产品等,都使用了放大器,滤波器,开关,数模/模数转换以与其它专用模拟和数字电路等多种混合信号电路。

尽管测试器件内部每个独立电路非常重要,同样系统级的测试也非常重要。

系统级测试保证电路在整体上能满足终端应用的要求。

为了测试大规模的混合信号电路,我们必须对该电路的终端应用有根本的了解。

图3所示是数字移动的模块图,此系统拥有许多复杂的混合信号部件,是混合信号应用很好的一个例子。

复杂混合信号应用的简单模块图:

数字移动系统

根本的混合信号测试

  直流参数测试

  接触性测试(短路开路测试)用于保证测试仪到芯片接口板的所有电性连接正常。

  漏电流测试是指测试模拟或数字芯片高阻输入管脚电流,或者是把输出管脚设置为高阻状态,再测量输出管脚上的电流。

尽管芯片不同,漏电流大小会不同,但在通常情况下,漏电流应该小于1uA。

漏电流主要用于检测以下几种缺陷:

芯片内部不同层之间的短路或者漏电,DC偏差或者其他参数偏移等。

这些缺陷最终会导致芯片不能正常工作。

过大的漏电流也会引起器件的早期失效使终端系统故障。

通常会进展两次漏电流测试,第一次是给待测管脚施加高电压(和电源电压相近的电压),另一次是给待测管脚施加接近零电压(或芯片负电源电压)。

这两种测试分别称作高电平漏电流测试(IIH)和低电平漏电流测试(IIL)。

电源电流测试

  测试芯片每个电源管脚消耗的电流是发现芯片是否存在灾难性缺陷的最快方法之一。

每个电源管脚被设置为预定的电压,接下来用自动测试设备的测量单元测量这些电源管脚上的电流。

这些测试一般在测试程序的开始时进展,以快速有效地选出那些完全失效的芯片。

电源测试也用于保证芯片的功耗能满足终端应用的要求。

 DAC和ADC测试规格

  DAC和ADC芯片必须执行一些特定的静态和动态参数检测。

下一面一一介绍这些指标:

  DAC静态参数指标

  分辨率(Resolution)是指DAC输出端所能变化的最小值。

 

满量程X围(FSR),是指DAC输出信号幅度的最大X围,不同的DAC有不同的满量程X围。

该X围可以是正和/或负电流,正和/或负电压。

最小有效位(LSB)大小是指输入代码变化最小数值时输出端模拟量的变化。

差分非线性度(DNL)用于测量小信号非线性误差。

计算方法:

本输入代码和其前一输入代码之间模拟量的变化减去1个最小有效位(LSB)大小。

单调性是指如果增加输入代码其输出模拟量也会保持相应的增加或反之的特性。

该特性对使用在反应环电路之中的DAC非常重要,它能保证反应环不会被死锁在两个输入代码之间。

整体非线性度(INL)是指对一个输入代码所有非线性度的累计。

这一参数可以通过测量该代码相应的输出模拟量与起终点间直线之间的偏差来完成。

偏差(offset)是指DAC的输入代码为0时DAC输出模拟量与理想输出的偏差。

增益误差(gainerror)是指DAC的输入代码为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1