初中数学听课记录范文docxWord文档格式.docx

上传人:b****1 文档编号:13408711 上传时间:2022-10-10 格式:DOCX 页数:18 大小:19.84KB
下载 相关 举报
初中数学听课记录范文docxWord文档格式.docx_第1页
第1页 / 共18页
初中数学听课记录范文docxWord文档格式.docx_第2页
第2页 / 共18页
初中数学听课记录范文docxWord文档格式.docx_第3页
第3页 / 共18页
初中数学听课记录范文docxWord文档格式.docx_第4页
第4页 / 共18页
初中数学听课记录范文docxWord文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

初中数学听课记录范文docxWord文档格式.docx

《初中数学听课记录范文docxWord文档格式.docx》由会员分享,可在线阅读,更多相关《初中数学听课记录范文docxWord文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

初中数学听课记录范文docxWord文档格式.docx

学生回答,教师点评

二、思考探究,获取新知

探究1求抛物线y=ax2+bx+c与x轴的交点

例1求抛物线y=x2-2x-3与x轴交点的横坐标.

探究2抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:

(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?

猜想交点个数和方

程ax2+bx+c=0(a≠0)的根的个数有何关系?

(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?

探究3利用函数图象求一元二次方程的近似根

提出问题:

同学们可以估算下一元二次方程x2-2x-2=0的两根是什么?

三、运用新知,深化理解

1.(广东中山中考)已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0

的根的情况是()

A.有两个不相等的实数根

B.有两个相等的实数根

C.有两个同号的实数根

D.没有实数根

四、师生互动,课堂小结

1.这节课你学到了什么?

还有哪些疑惑?

1.教材P28第1~3题.

2.完成同步练习册中本课时的练习.

听课记录

科目

分式的乘除

一、课堂引入

计算

(1)y

x

y)

(2)

y

二、例题讲解

(P17)例4.计算(补充)例.计算

(1)3ab2

8xy

3x

2x3y

9a2b

(4b)

3x(3x)

(1)

4yy2x

3ab2

4b

=

3

2

(先把除法统一成乘法运算)

2x

9a

b

(判断运算的符号)

9a2b

2x3y

=16b

(约分到最简分式)

9ax

三、随堂练习

计算

(1)

3b2

bc

2a)

(2)

5c

(6ab

6

c

20c3

16a

2a2

2a2b4

30a3b10

四、课后练习

8x2y4

x2y)

(2)

a2

6a

9

3aa2

4y6

6z

4b2

2b3a9

分式方程

1.回忆一元一次方程的解法,并且解方程

2.提出本章引言的问题:

x2

2x3

4

1

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时

间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

(P34)例1.解方程

(P34)例2.解方程

教三、随堂练习

学解方程

(1)3

x6

x1

x2

(3)x1

1(4)

2x1

1.解方程

4x

7

8

5

3x8

(3)

xx2

xx2

(4)

x12x2

2.X为何值时,代数式

2的值等于

2?

3x

勾股定理的逆定理

四、课堂引入

创设情境:

⑴怎样判定一个三角形是等腰三角形?

⑵怎样判定一个三角形是直角三角形?

和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜

想。

五、例习题分析

例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中30°

角所对的直角边等于斜边的一半。

例2(P82探究)证明:

如果三角形的三边长a,b,c满足

a2+b2=c2,那么这个三角形是直角三角形。

A

A1

分析:

⑴注意命题证明的格式,首先要根据题意画出图形,然后

写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个

B

a

C

C1

角是直角的三角形是直角三角形,从而将问题转化为如何判断一

B1

个角是直角。

六、课堂练习

1.判断题。

⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。

⑵命题:

“在一个三角形中,有一个角是30°

,那么它所对的边是另一边的一半。

”的逆命题是真命题。

⑶勾股定理的逆定理是:

如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。

七、课后练习,

1.叙述下列命题的逆命题,并判断逆命题是否正确。

⑴如果a3>0,那么a2>0;

⑵如果三角形有一个角小于90°

,那么这个三角形是锐角三角形;

⑶如果两个三角形全等,那么它们的对应角相等;

⑷关于某条直线对称的两条线段一定相等。

科目数学课题等腰三角形授课教师李琼芳

132

年11月

12日第1

一、回顾.提问:

轴对称图形的定义、垂直平分线的定义、性质、判定

.

二、新授课

1、请同学们翻开课本P75,完成课本上的探究.

1)检查同学们的完成情况;

2)教师口头讲解探究过程;

3)提问:

折完后,可以得到哪些信息?

(如图

1)

得到:

△ABD≌△ACD

AB=CD

∠B=∠C

BD=CD

∠1=∠2

图1

∠ADB=∠ADC=90°

最终引出等腰三角形“三线合一”的性质.

板书:

性质1:

等边对等角

性质2:

三线合一

强调“三线合一”的“三线”是顶角的角平分线、底边上的中线、底边上的高.举反例:

折底角的角分线,说明等腰三角形其他边上的三线不重合.

4)证明性质1.

教师引导学生写出已知、求证后,学生分组分别添加三种辅助线来证明性质1.

三位学生上台板书,教师简单点评,重点讲解添加高线的证明方法.

5)证明性质2.

教师口述证明过程.

三、例题讲解

已知:

如图2,在△ABC中,AB=AC,AD⊥BC于点D

求证:

BE=CE

利用性质2的证明步骤.

四、作业布置

一、课本的探究简单易行,课堂上探究部分主要由学生完成,充分发挥了学生的主动性

.利用轴

对称、全等的知识顺理成章完成等腰三角形性质的探究,完成了知识的过渡,也让学生认识到

轴对称是一个很有效的研究工具.

二、由学生根据所折图形得到的信息,引出等腰三角形“三线合一”的性质,这一过程自然连

贯,学生容易接受.同时,所举的反例十分直观,加深了学生对等腰三角形这一性质的理解

三、性质

1的证明过程中,三种添加辅助线的方法均有涉及,重点讲解添加高线的方法,详略

得当.

四、性质

2的证明可以认为是性质

1证明的延续,不是本节课的重点

.本堂课对这部分内容采取

简单口头讲解的方式,既节省了时间,又避免了重复.

2019年

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1