初中数学公式定理大集合详细初一全Word下载.docx

上传人:b****1 文档编号:13353298 上传时间:2022-10-10 格式:DOCX 页数:16 大小:68.02KB
下载 相关 举报
初中数学公式定理大集合详细初一全Word下载.docx_第1页
第1页 / 共16页
初中数学公式定理大集合详细初一全Word下载.docx_第2页
第2页 / 共16页
初中数学公式定理大集合详细初一全Word下载.docx_第3页
第3页 / 共16页
初中数学公式定理大集合详细初一全Word下载.docx_第4页
第4页 / 共16页
初中数学公式定理大集合详细初一全Word下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

初中数学公式定理大集合详细初一全Word下载.docx

《初中数学公式定理大集合详细初一全Word下载.docx》由会员分享,可在线阅读,更多相关《初中数学公式定理大集合详细初一全Word下载.docx(16页珍藏版)》请在冰豆网上搜索。

初中数学公式定理大集合详细初一全Word下载.docx

的形式,其中

,n是整数,这种记数法叫做科学记数法。

考点五、有理数大小的比较

1、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解有理数与数轴的点是一一对应的,并能灵活运用。

2、有理数大小比较的几种常用方法

(1)数轴比较:

在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:

设a、b是有理数,

(3)求商比较法:

设a、b是两正有理数,

(4)绝对值比较法:

设a、b是两负有理数,则

考点六、有理数的运算

1、加法交换律

2、加法结合律

3、乘法交换律

4、乘法结合律

5、乘法对加法的分配律

6、有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

代数式

考点一、整式的有关概念

1、代数式

用运算符号把数或表示数的字母连接而成的运算式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式

只含有数字与字母的积的代数式叫做单项式。

注意:

单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如

,这种表示就是错误的,应写成

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

是6次单项式。

考点二、多项式

1、多项式

几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项

所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、添(去)括号法则

(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则

整式的加减法:

(1)去括号;

(2)合并同类项。

方程(组)

考点一、一元一次方程的概念

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程

叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

考点七、二元一次方程组

1、二元一次方程

含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程

2、二元一次方程的解

使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组

两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法

(1)代入法

(2)加减法

不等式(组)

考点一、不等式的概念

1、不等式

用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集

对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解集。

求不等式的解集的过程,叫做解不等式。

3、用数轴表示不等式的方法

考点二、不等式基本性质

1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

考试题型:

考点三、一元一次不等式

1、一元一次不等式的概念

一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、一元一次不等式的解法

解一元一次不等式的一般步骤:

(1)去分母

(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1

考点四、一元一次不等式组

1、一元一次不等式组的概念

几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

求不等式组的解集的过程,叫做解不等式组。

当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

2、一元一次不等式组的解法

(1)分别求出不等式组中各个不等式的解集

(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

考点一、平面直角坐标系

1、平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;

铅直的数轴叫做y轴或纵轴,取向上为正方向;

两轴的交点O(即公共的原点)叫做直角坐标系的原点;

建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当

时,(a,b)和(b,a)是两个不同点的坐标。

考点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限

点P(x,y)在第二象限

点P(x,y)在第三象限

点P(x,y)在第四象限

2、坐标轴上的点的特征

点P(x,y)在x轴上

,x为任意实数

点P(x,y)在y轴上

,y为任意实数

点P(x,y)既在x轴上,又在y轴上

x,y同时为零,即点P坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上

x与y相等

点P(x,y)在第二、四象限夹角平分线上

x与y互为相反数

4、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称

横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称

纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称

横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于

(2)点P(x,y)到y轴的距离等于

图形的初步认识

考点一、直线、射线和线段

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:

有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:

有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

(1)几何图形的组成

点:

线和线相交的地方是点,它是几何图形中最基本的图形。

线:

面和面相交的地方是线,分为直线和曲线。

面:

包围着体的是面,分为平面和曲面。

体:

几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、直线的概念

一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。

4、射线的概念

直线上一点和它一旁的部分叫做射线。

这个点叫做射线的端点。

5、线段的概念

直线上两个点和它们之间的部分叫做线段。

这两个点叫做线段的端点。

6、点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

7、直线的性质

(1)直线公理:

经过两个点有一条直线,并且只有一条直线。

它可以简单地说成:

过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

8、线段的性质

(1)线段公理:

所有连接两点的线中,线段最短。

也可简单说成:

两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

9、线段垂直平分线的性质定理及逆定理

垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:

线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

考点二、角

1、角的相关概念

有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。

当角的两边在一条直线上时,组成的角叫做平角。

平角的一半叫做直角;

小于直角的角叫做锐角;

大于直角且小于平角的角叫做钝角。

如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。

如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。

2、角的表示

角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

用三个大写英文字母表示角时,一定要把顶点字母写在中间,边

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 教育学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1