电容式触摸屏设计规范组件研发部Word文件下载.docx
《电容式触摸屏设计规范组件研发部Word文件下载.docx》由会员分享,可在线阅读,更多相关《电容式触摸屏设计规范组件研发部Word文件下载.docx(28页珍藏版)》请在冰豆网上搜索。
审核人
目录
电容式触摸屏设计规范1
【目的】3
【适用范围】3
【参考文献】3
【概述】3
【名词解释】3
【电子设计】3
一、电容式触摸屏简介3
1、实现原理3
2、自电容与互电容3
三、驱动IC简介3
三、ITO图形设计3
四、布局设计要求3
1、关键器件布局3
2、布线3
五、ESD防护3
六、技术展望3
【结构设计】3
一、结构及材料使用3
1、结构3
2、材料使用3
二、设计规范3
三、结构设计注意点3
四、生产工艺3
【目的】
本规范的制定是为了了解电容屏的相关知识,协助公司内部相关人员更好的设计应用电容屏及相关事项,确保产品设计符合客户要求和供应商制程能力,给工程师提供设计参照和依据。
【适用范围】
驱动、基带、射频、结构、组件等与电容屏相关的直接或间接部门。
【参考文献】
电容屏驱动IC原厂提供的设计指导、供应商提供的介绍资料等,以及驱动芯片规格书。
【概述】
本文简单介绍了电容屏方面的相关知识,正文主要分为电子设计和结构设计两个部分。
电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面。
【名词解释】
1.V.A区:
装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。
2.A.A区:
可操作的区域,保证机械性能和电器性能的区域。
3.ITO:
IndiumTinOxide氧化铟锡。
涂镀在Film或Glass上的导电材料。
4.ITOFILM:
有导电功能的透明PET胶片。
5.ITOGALSS:
导电玻璃。
6.OCA:
OpticallyClearAdhesive光学透明胶。
7.FPC:
可挠性印刷电路板。
8.CoverGlass(lens):
表面装饰用的盖板玻璃。
9.Sensor:
装饰玻璃下面有触摸功能的部件。
(FlimSensorORGlassSensor)
【电子设计】
一、电容式触摸屏简介
电容式触摸屏即CapacitiveTouchPanel(CapacitiveTouchScreen),简称CTP。
根据其驱动原理不同可分为自电容式CTP和互电容式CTP,根据应用领域不同可分为单点触摸CTP和多点触摸CTP。
1、实现原理
电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。
电容矩阵如下图1所示。
图1电容分布矩阵
电容变化检测原理示意简介如下所示:
名词解释:
ε0:
真空介电常数。
ε1、ε2:
不同介质相对真空状态下的介电常数。
S1、d1、S2、d2分别为形成电容的面积及间距。
图2触摸与非触摸状态下电容分布示意
非触控状态下:
C=Cm1=ε1ε0S1/d1
触控状态下:
C=Cm1*Cmg/(Cm1+Cmg),Cm1=ε1ε0S1/d1,Cmg=Cm1=ε2ε0S2/d2
电容触摸驱动IC会根据非触控状态下的电容值与触控状态下的电容值的差异来判断是否有触摸动作并定位触控位置。
2、自电容与互电容
自电容式CTP是利用单个电极自身的电容变化传输电荷,由一端接地,另一端接激励或采样电路来实现电容的识别(测量信号线本身的电容)。
自电容式CTP的坐标检测是依次检测横向和纵向电极阵列,根据触摸前后电容变化分别确定横向和纵向坐标,然后组合成平面坐标确定触摸位置。
当触摸点只有一个时,组合后的坐标也是唯一的一个,可以准确定位;
当触摸点有两个时,横向和纵向分别有两个坐标,两两组合后出现四组坐标,其中只有两个时真实触摸点,另两个就是属称的“鬼点”。
所以自电容式CTP无法实现真正的多点触摸。
互电容式CTP失利用两个电极进行传输电荷,一端接激励,另一端接采样电路来实现电容的识别(测量垂直相交的两个信号之间的电容)。
互电容式CTP坐标检测也是检测横向和纵向电极阵列,不同的是它是由横向依次发送激励而纵向同时接收信号,这样可以得到所有横向和纵向交汇点的电容值,根据电容值的变化可以计算出每一个触摸点的坐标,这样即使有多个触摸点也能计算出每个触摸点的真实坐标。
所以互电容式CTP可以实现真实多点触控。
自电容的优点是简单、计算量小,缺点是单点、速度慢;
互电容的优点是真实多点、速度快,缺点是复杂、功耗大、成本高。
3、结构及材料使用
三、驱动IC简介
电容屏驱动IC是电容屏工作处理的主体,是采集触摸动作信息和反馈信息的载体,IC采用电容屏工作的原理采集触摸信息并通过内部MPU对信息进行分析处理从而反馈终端所需资料进行触摸控制。
IC与外部连接是通过对外的引脚进行的,电容屏驱动IC厂家众多,各自的设计也不尽相同,但是基本原理也是大同小异,因此个驱动IC的芯片引脚也比较类似,只有个别引脚是各自功能中特殊的设计,如下对电容屏驱动IC的引脚做一个简单的说明。
驱动信号线:
即Driver或TX,是电容屏的电容驱动信号输出脚。
感应信号线:
即Sensor或RX,是电容屏的电容感应信号输入脚。
电源电压:
分模拟电源电压和数字电源电压。
模拟电压范围一般为2.6V~3.6V,典型值为2.8V和3.3V;
数字电压即电平电压为1.8V~3.3V,由主板端决定。
电容屏设计可以设计为单电源和双电源两种模式,目前以单电源供电为主(可以减少接口管脚数)。
GND:
也分为模拟地和数字地两种,一般两种地共用,特殊情况下需将两种地分开以减少两种地之间的串扰现象。
I2C接口:
I2C接口包括I2C_SCL和I2C_SDA。
I2C_SCL为时钟输入信号,I2C_SDA为数据输入输出信号。
SPI接口:
SPI接口包括SPI_SSEL、SPI_SCK、SPI_SDI、SPI_SDO。
SPI_SSEL为片选信号,低电平有效;
SPI_SCK为时钟输入信号;
SPI_SDI为数据输入信号;
SPI_SDO为数据输出信号。
RESET:
芯片复位信号,低电平有效。
WACK:
芯片唤醒信号。
TEXT_EN:
测试模式使能信号。
GPIO0~N:
综合功能输入输出IO口。
VREF:
基准参考电压。
VDD5:
内部产生的5V工作电压。
以上引脚定义没有包含全部的驱动IC的功能,如LED、Sensor_ID、Key_Sensor等特殊功能作用的管脚,这些管脚需根据具体IC确认其具体作用及用法。
如下是Focaltech的FT5X06系列的管脚说明。
Name
Type
Description
TX0~TXN
O
Transmitoutputpins.
RX0~RXN
I
Receiverinputpins.
AVDD
P
Analogpowersupply.
DVDD
Digitalpowersupply(1.8V).
AGND
GND
AnalogGND.
DGND
DigitalGND.
INT
Externalinterrupttothehost.
I2C_SCL
I/O
I2Cclockinput.
I2C_SDA
I2Cdatainputandoutput.
SPI_SSEL
SPISlavemode,chipselect,activelow.
SPI_SCK
SPISlavemode,clockinput.
SPI_MOSI
SPISlavemode,datainput.
SPI_MISO
SPISlavemode,dataoutput.
/RST
ExternalReset,Lowisactive.
WAKE
Externalinterruptfromthehost.
TEST_EN
Testmodeenabledathighandfloatinnormalmode.
GPIO0~N
GeneralPurposeInput/Outputport.
VDD5
internalgenerated5Vpowersupply.
三、ITO图形设计
ITO可蚀刻成不同的图形,不过造价师相同的,而且很难讲哪个图像比其他图形工作效率高,因为触摸屏必须与电子间配合才能发挥作用。
I-phone采用的图形是最简单的一种,即在ITO在玻璃一面为横向电极,在另一面为纵向电极,此设计简单巧妙但几何学要求特别的工艺电能来产生准确的焦点。
图3I-phonePattern
闭路锁合的钻石形Pattern是最常见的ITO图形,45°
角的轴线组成菱形块,每个菱形块通过小桥连接,此图形用于两片玻璃,一片是横向菱形排,另一片是纵向的菱形列,导电图形在玻璃内侧,行与列对应锁定后贴合。
菱形图形大小不一,取决于制造商,但基本在4-8mm之间,几乎所有电子控制器(CTP控制IC)都可用于此图形。
图4菱形Pattern
复杂图形的ITO图形需要专用的电子控制器,有时需要购买许可。
一些IC厂会根据自身的特点设计特定的Pattern,且为避免滥用或保护权利会申请图形专利。
目前基础ITOPattern有Diamond、Rectangle、Diamond&
Rectangle、Hexagon等。
四、布局设计要求
根据驱动IC的放置位目前可分为COF、COB两种方式。
COF即ChiponFPC,作为终端导向方式被广泛应用,这种设计方式可根据实际应用效果和市场变化在不更改主板的情况下更换电容屏设计方案,可兼容多种电容屏驱动IC设计方案。
缺点是前期和后期调试工作量大,备料周期长。
COB即ChiponBoard,将驱动IC融合在主板端带来的一个问题是主板和电容屏驱动IC方案确定后不能随意更改设计方案,因为电容屏驱动IC基本都不是PINtoPIN兼容的,更换方案意味着重新布局相关的主板设计。
COB方案的优点成本降低,交期短,方便备料,前期设计和后期调试工作量小。
无论是COF或COB方案都需要在布局走线时注意相关设计要求,根据IC原厂建议以及供应商的实际应用经验,总结如下设计注意事项:
1、关键器件布局
各组电源对应的滤波电容需靠近芯片引脚放置,走线尽量短,如下为IC周围元件布局示意图:
图5元件布局示意图
电容屏与主板连接端口周围不要走高速信号线。
对于COB方案,触控IC尽量靠近HostIC。
触控IC及FPC出线路径要求远离FM天线、ADV天线、DTV天线、GSM天线、GPS天线、BT天线等。
与触控IC相关器件尽量放进屏蔽罩中,且尽可能采用单独的屏蔽罩。
触控IC附近有开关电源电路、RF电路或其它逻辑电路时,需注意用地线隔离保护触控IC、芯片电源、信号线等。
RF是手机中最大的干扰信号,因此对芯片与RF天线间的间距有一定要求:
在顶部要求间距≥20mm,在底部要求间距≥10mm。
适用于COF和COB方案。