中考数学第一轮复习数与式教案人教新课标版Word文档下载推荐.docx
《中考数学第一轮复习数与式教案人教新课标版Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《中考数学第一轮复习数与式教案人教新课标版Word文档下载推荐.docx(31页珍藏版)》请在冰豆网上搜索。
相关的其它考点
所占比例
2007年河南
1
选择题
3
乘方的意义
15%
2
分式的定义
7
填空题
相反数的概念
8
整式的运算
12
实数的意义
13
数的规律探究题
2008年河南
绝对值的意义
14%
科学记数法的概念
实数
16
解答题
分式的运算
2009年河南
平方根的意义
9
代数式的运算
分式的运算分式的定义
2009年北京
4
18%
因式分解
5
实数的运算
整体思想
2009年天津
特殊三角函数值
10%
绝对值的意义,二次根式
乘方的意义,非负数
11
二次根式的运算
分式的意义,分式的运算
一元二次方程
2009年重庆
19%
幂的运算
17
6
21
10
2009年河北
幂的运算,整式的运算
实数的意义及相关概念
概率
倒数的意义
19
2009年山东
18
数与式是初中数学的基础,中考着重对基本概念和计算能力的考查,题型以选择、填空及简单的解答题为主。
题量一般在3个左右。
分值在17分左右,所占比例为14%(指河南省)。
近几年,出现更多贴近学生生活实际、探究规律的开放型问题、估算无理数的大致范围等热点题目,强化了实数的应用和规律探索问题,并注意数形结合、分类讨论思想的应用和创新意识的培养。
分式的化简求值常常在河南中招试卷中以解答题的形式考查,以探索规律,写出公式是方式考查学生思维过程和数学思想方法的应用题目越来越成为热点。
第三部分典型例题
作者:
牛保中高玉平
第一节实数
典例1.把下列各数分别填入相应的集合里.
,21.3,-1,1.234,-
0,
,
(
-
)
…中
无理数集合{ } 负分数集合{ }
整数集合 { } 非负数集合{ }
点拨:
实数分类不能只看表面形式,应先化简再根据结果去判断。
变式1:
把下列各数填入相应的集合内:
。
有理数集{},无理数集{}正实数集{}
变式2.:
在下面两个集合中各有一些实数,请你分别从中选出2个有理数和2个无理数,再用“
+,-,×
,÷
”中的3种符号将选出的4个数进行3次运算,使得运算结果是一个正整数。
典例2:
在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材.4.581亿帕用科学记数法表示为____________帕(保留两个有效数字).
对大数保留有效数字,可以先将这些数用科学记数法表示出来,再保留有效数字。
解:
4.581亿=458100000,用科学记数法表示为4.581×
,故填4.6×
。
北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示为()
A.
㎡B.
㎡C.
㎡D.
㎡
变式2:
由四舍五入法得到的近似数
,它精确到 位。
这个近似值的有效数字是 。
典例3:
已知x,y是实数,
,若
则实数
的值是( )
B.
C.
D.
解:
由
,得
.
解得
将
,y=3代入
,从而a=
答案:
选A.
将已知的第一个等式变为:
,根据非负数的性质,得3x+4=0及y-3=0,可求得x,y的值,代入已知的第二个等式,便可求出
的值.
已知△ABC的三边长分别为
且
,试判断△ABC的形状.
若实数
和
满足
则
的值等于_______
典例4计算:
-1)
+(
+∣5-
∣-2
对实数运算的考查往往是一些基础概念的理解和运用,解题时应注意运算顺序。
=1,(
=2,∣5-
∣=3
=1+2+3
-5-2
=
-2.
计算:
典例5:
将
,这三个实数按从小到大的顺序排列,正确的结果是()
A.
B.
C.
答案:
C
比较实数的大小,有许多种方法可供选者,如求商画数轴等,具体方法根据题目特征而定。
已知
中,最大的数是__.
<0,
>0,且
<
,用“<”连结
,-
典例6有一列数
,从第二个数开始,每一个数都等于
与它前面那个数的倒数的差,若
,则
为( )
A.
B.
C.
D.
解决数字规律问题,应从简单的特例开始,分析存在的普遍规律
再利用规律解决问题。
典例7先观察下列等式,然后用你发现的规律解答下列问题。
=1-
=
,…
(1)计算
+
(2)探究
+…+
=___________.(用含有
的式子表示)
(3)若
…+
的值为
,求
通过给出的三个特殊的式子,可以发现相邻两自然数积的倒数等于这两个数的倒数的差,解决数字规律问题时,应从简单的特例开始,分析存在的普遍规律,再利用规律解决问题。
(1)原式=
(2)原式=
=1-
(3)原式=
…
×
)
由
,解得
=17.
经检验
=17使原等式成立,所以
小王利用计算机设计了计算程序,输入和输出的数据如下:
那么,当输入数据为8时,输出的数据是()
A.
B.
C.
D.
变式2:
根据下表中的规律,从左到右的空格中应依次填写的数字是()
A.100,011B.011,100C.011,101D.101,110
第二节整式
典例1先化简,再求值:
(2
)-3
,其中
先运用乘法公式及多项式乘法化简,再代入计算。
原式
当
时,原式
=-(3-4)
=1。
求代数式
的值。
典例2图
(1)是一个边长为
的正方形,小颖将图
(1)中的阴影部分拼成图
(2)的形状,由图
(1)和图
(2)能验证的式子是()
图
(1)图
(2)
C.
根据两个图形中阴影部分的面积相同,得出两种计算面积的代数式的值相等,来验证公式。
由题意得两图中阴影部分的面积相等,图
(1)中,由勾股定理得空白部分正方形的边长为
,图
(1)中阴影部分面积为
图
(2)阴影部分面积为4
,所以
,故选B。
从边长为
的正方形内去掉一个边长为
的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()
A.
D.
典例3有一列单项式:
…,
(1)你能说出它们的规律是什么吗?
(2)写出第2008个单项式,
(3)写出第
个以及第(
+1)个单项式。
代数式的规律探究题,需要经过观察、分析、类比、归纳等过程,进而由特殊到一般发现其规律。
(1)每个单项式的系数的绝对值与该单项式中
的指数相等,奇数项系数为负,偶数项系数为正。
(2)2008
(3)当
为奇数时,第
个单项式为
,第
为偶数时,第
用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n个图案中正方形的个数是__________。
将连续的自然数1至36按右图的方式排成一个正方形阵列,用一个小正方形任意
圈出其中的9个数,设圈出的9个数的中心的数为a,用含有a的代数式表示这9
个数的和为__________.
典例4:
代数式
的值为9,则
的值为()
A.
B.
C.
D.
体现的思想方法是整体代入法。
时,代数式
的值为2005,则当
A.-2004 B.-2005 C.2005