SPSS学习系列09缺失值处理Word格式文档下载.docx

上传人:b****1 文档编号:13226633 上传时间:2022-10-08 格式:DOCX 页数:21 大小:346.63KB
下载 相关 举报
SPSS学习系列09缺失值处理Word格式文档下载.docx_第1页
第1页 / 共21页
SPSS学习系列09缺失值处理Word格式文档下载.docx_第2页
第2页 / 共21页
SPSS学习系列09缺失值处理Word格式文档下载.docx_第3页
第3页 / 共21页
SPSS学习系列09缺失值处理Word格式文档下载.docx_第4页
第4页 / 共21页
SPSS学习系列09缺失值处理Word格式文档下载.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

SPSS学习系列09缺失值处理Word格式文档下载.docx

《SPSS学习系列09缺失值处理Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《SPSS学习系列09缺失值处理Word格式文档下载.docx(21页珍藏版)》请在冰豆网上搜索。

SPSS学习系列09缺失值处理Word格式文档下载.docx

其它保持默认,点【继续】

4.回到原窗口,勾选【估计】框中的“EM”和“回归”,其它默认设置。

点击【EM】或【回归】按钮可以修改其设置

注意:

若要保存替换缺失值之后的数据,需要勾选“保存完成数据”:

创建新数据集并命名,或写入新数据文件。

另外,默认使用所有变量进行分析,若要选择部分变量,可点【变量】按钮修改。

点【确定】,得到输出结果:

单变量统计

N

均值

标准差

缺失

极值数目a

计数

百分比

tenure

968

35.56

21.268

32

3.2

age

975

41.75

12.573

25

2.5

address

850

11.47

9.965

150

15.0

9

income

821

71.1462

83.14424

179

17.9

71

employ

904

11.00

10.113

96

9.6

15

reside

966

2.32

1.431

34

3.4

33

marital

885

115

11.5

ed

965

35

3.5

retire

916

84

8.4

gender

958

42

4.2

a.超出范围(Q1-1.5*IQR,Q3+1.5*IQR)的案例数。

提供了数据的一般特征,给出了所有分析变量缺失数据的频数、百分比,定量变量的均值、标准差、极值数目。

income(家庭收入)有最多具有缺失值(17.9%),也有最多的极值;

而age(年龄)有最少缺失值(5%)。

估计均值摘要

所有值

EM

36.12

41.91

11.58

77.3941

11.22

2.29

回归

35.77

41.68

11.59

74.3174

10.99

估计标准差摘要

21.468

12.699

10.265

87.54860

10.165

1.416

21.188

12.534

9.935

84.71430

10.242

1.423

使用EM法和回归法进行缺失值的估计和替换后,总体数据的均值和标准差的变化情况,其中“所有值”为原始数据特征,另两行分别是采用EM法、回归法得到的统计参数。

单个方差t检验a

t

.4

.3

.

1.4

1.0

df

202.2

192.5

313.6

191.1

199.5

#存在

819

832

693

766

824

#缺失

149

143

128

138

142

均值(存在)

35.68

41.79

74.0779

11.20

2.34

均值(缺失)

34.91

41.49

55.2734

9.86

2.21

-5.0

-8.3

-3.9

-5.9

3.6

249.5

222.8

203.3

315.2

793

801

741

792

175

174

157

163

33.93

40.01

10.67

9.91

2.39

42.97

49.73

14.97

15.93

2.02

-1.0

-.4

-.7

.5

-.3

110.5

110.2

97.6

114.9

110.9

877

881

874

91

94

80

92

35.34

41.69

11.37

71.4953

2.31

37.70

42.27

12.32

67.9125

2.37

.0

1.8

1.2

-.8

.9

-2.2

148.1

149.5

138.8

121.2

128.3

134.2

856

862

748

728

805

857

112

113

102

93

99

109

42.00

11.61

70.3887

11.10

2.28

35.57

39.85

10.43

77.0753

10.17

2.61

-.6

.2

95.4

94.4

84.0

93.2

99.0

888

893

777

751

82

73

70

81

35.44

41.70

11.42

71.3356

36.89

42.29

11.96

69.1143

2.30

对于每个定量变量,由指示变量(存在,缺失)组成成对的组。

a.不显示少于5%个缺失值的指示变量。

通过单个方差t检验有助于标识缺失值模式可能影响定量变量的变量。

按照相应变量是否缺失将全部记录分为两组,再对所有定量变量在这两组间进行t检验。

判断数据是否完全随机缺失(表示缺失和变量的取值无关)。

例如,似乎年纪较长的响应者更不可能报告收入水平。

当income缺失时,平均age为49.73,与之相比,当income未缺失时为40.01。

实际上,income的缺失似乎影响多个定量(刻度)变量的平均值。

此指示数据可能并未完全随机缺失。

类别变量相对于指示变量的交叉制表

总计

未婚

已婚

SysMis

存在

390

358

85.0

85.5

83.4

88.7

%SysMis

14.5

16.6

11.3

380

348

82.1

83.3

81.1

80.9

16.7

18.9

19.1

418

387

90.4

91.7

90.2

86.1

8.3

9.8

13.9

423

392

101

91.6

92.8

91.4

87.8

7.2

8.6

12.2

不显示少于5%个缺失值的指示变量。

观察marital(婚姻状况)表,指示变量的缺失值数量在marital类别之间似乎变化不大。

一个人结婚与否似乎并不影响任何定量(刻度)变量的数据缺失情况。

例如,85.5%未婚者报告address(当前地址居住年限),83.4%已婚者报告相同变量。

差异很小并且很可能是巧合。

未完成中学学历

中学学历

社区学院

大学学位

研究生学位

240

186

56

30

83.2

85.7

88.4

81.9

87.5

16.8

14.3

11.6

18.1

12.5

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1