最新人教版初一数学七年级上册-第三章《一元一次方程》全单元教学设计Word文件下载.doc
《最新人教版初一数学七年级上册-第三章《一元一次方程》全单元教学设计Word文件下载.doc》由会员分享,可在线阅读,更多相关《最新人教版初一数学七年级上册-第三章《一元一次方程》全单元教学设计Word文件下载.doc(24页珍藏版)》请在冰豆网上搜索。
2、技能掌握与指导:
能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。
利用率100%。
3、智能的提高与训导:
在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。
4、情感修炼与开导:
积极创设问题情景,认识到列方程解应用题的优越性,初步体会到“从算式到方程是数学的进步”的含义。
5、观念确认与引导:
通过经历“方程”这一数学概念的形成与应用过程,感受到“问题情境——分析讨论——建立模型——解释应用——转换拓展”的模式,从而更好地理解“方程”的意义。
结合例题培养学生观察、类比的能力和渗透数形结合思想。
三、障碍与生成关注
通过“问题情境”,建立“数学模型”,难度较大,为此要充分引导学生关注生活实际,仔细分析题目题意,促使学生朝“数学模型”方面理解。
四、学程与导程活动
(一)创设情景、引入新课
同学们知道南通市的东城区吗?
那宽广的人民东路延伸段正吸引着许多投资者的目光,南通市最大的环保热电厂已在东城区的新胜村拔地而起(图片展示),让我们乘36路公交车去感受一下吧!
假设36路公交车无障碍匀速行驶,途经小石桥、国胜东村、观音山三地的时间如表所示:
地名
时间
小石桥
8:
00
国胜东村
09
观音山
17
新胜村在观音山、国胜东村之间,到观音山的路程有3千米,到国胜东村的路程有1千米,请问小石桥到新胜村的路程有多远?
先让学生读题,然后教师指出:
这是一个行程问题,而行程问题一般借助于直线型示意图,教师首先画出下图,标出两端地点。
小石桥 观音山
最后师生共同逐句分析,并提问:
你从此题中可以获得哪些信息,让学生自由发挥,最后,教师作如下总结:
1、看表格有:
从小石桥到国胜东村有________分钟;
从小石桥到观音山有_______分钟;
从国胜东村到观音山有______分钟。
2、你能画出汽车所经过四个地方的顺序图吗?
不妨试一试;
对照示意图,让学生指出有关路程的信息。
教师最后整理成如下示意图:
小石桥 国胜东村 新胜村 观音山
(二)动手实践、发现新知
你会解决这个实际问题吗?
不妨试一试。
(以同桌同学或前后两桌为一组,讨论交流一下此题怎样解,教师巡视之后,请两位同学上黑板板演,教师评讲时,让学生指出每个式子的意义。
)
如果学生中有人利用方程做出,教师分析左右两边的意义;
如果没有,则作如下提示:
如果设小石桥到新胜村的路程为X千米,教师根据示意图,提出下列问题,让学生自主讨论口答:
1、小石桥到国胜东村有_____千米,小石桥到观音山有_____千米。
2、小石桥到国胜东村行车_____分钟,小石桥到观音山行车_____分钟。
3、从小石桥到国胜东村的汽车速度为_____千米/分。
让学生口答,请学生判断修正,并提出此题中有哪些相等关系?
从小石桥到国胜东村的汽车速度与从小石桥到观音山的汽车速度相等吗?
由此启发得出方程:
指出:
以后我们将学习如何从此方程中解出未知数X,从而得出小石桥到新胜村的路程。
(三)类比分析、总结提高
1、方法解题时,列出的算式中只能用已知数表示;
而方程是根据问题的相等关系列出的等式,其中既含有已知数,又含有未知数,即方程是含有未知数的等式。
同学们也看到列方程比较方便,而算式较繁。
2、列方程的步骤
让学生根据例子,总结出列方程的三步骤:
(1)设字母表示未知数;
(2)找出问题中的相等关系;
(3)写出含有未知数的等式——方程。
3、对于上面问题,你还能列出其它方程吗?
如能,你依据哪个相等关系?
(学生讨论,代表发言)
(四)例题分析、揭示课题
同学们是否参加过学校的义务劳动呢?
下面一起讨论义务为学校搬运砖块的问题。
例1、学校组织65名少先队员为学校建花坛搬砖,六(1)班同学每人搬6块,六(2)班同学每人搬8块,总共搬了400块,问六(1)班同学有多少人参加了搬砖?
1、这个问题已知条件较多,题中的数量关系较复杂,列算式不易直接求出答案,这时,教师抓住时机,引导学生分组讨论,合作交流,帮助学生分析题意,分清已知量、未知量,寻找题中的相等关系。
先让学生试做,然后抓住时机,亮出如下表格,见机讲解。
六(1)班
六(2)班
总数
参加人数
每人搬砖数
6
8
共搬砖数
400
2、 通过上面所做的题目分析看出,有些问题利用算术方法解比较困难,而用方程解决比较简单。
由上面题目分析也得出:
这些都是只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程(板书课题:
一元一次方程)
3、让学生根据一元一次方程的定义,举出一元一次方程的例子,师生对照定义进行分析评讲。
4、例2:
根据下列问题,设未知数并列出方程:
(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(2)一根长的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?
让2位学生上黑板板演,其余科学生在下面做,然后,师生共同批改,批改时,对照一元一次方程的定义及列方程的步骤讨论讲解,并指出方程左右两边的意义。
(五)总结巩固、初步应用
1师生共同小结归纳
上面的分析过程可以表示如下:
设未知数 找相等关系 列方程
实际问题
一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
2、练习:
(1)
环形跑道一周长,沿跑道跑多少周,可以跑?
(2)
甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?
(3)一个梯形的下底比上底多,高,面积是,求上底。
2、
作业:
课本73页第1、5题。
五、笔记与板书提纲
课题 例1 例1示意图
定义 例2
列方程的分析过程归纳
六、练习与拓展选题
根据生活经历,自编一道列方程应用题。
七、个别与重点辅导:
学生姓名(略)
八、反思与点评记录
第三章、一元一次方程:
2.1
从算式到方程
教学目标:
1.了解什么是方程,什么是一元一次方程;
2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;
3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;
4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
教学重点:
1.了解什么是方程、一元一次方程;
2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学难点:
分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程:
一、游戏激趣
同学们,大家小时候一定都说过儿歌吧?
那么这一首儿歌你一定说过(屏幕出示):
1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;
……。
现在,我们就来“比一比,说儿歌”(屏幕出示)。
要求是:
以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。
规则是:
每一大组各派一名代表,看谁说得又快又好;
第一大组,谁来?
其他同学可听仔细了。
(进行比赛)
我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?
(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)
这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。
二、
创设情境,引入课题
1、同学们都挺喜欢吃巧克力吧!
假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?
好东西要与好朋友分享,对吧?
如果你和你的好朋友一人一半,你分得多少呢?
我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?
如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。
此时你又分得多少颗?
(让学生自己回答出两种解法——代数方法和算术方法)
2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。
今天这一节课我们就共同来研究“2.1节从算式到方程”。
3、什么是方程?
同学们还记得吗?
请大家回忆一下。
、
4、刚才的问题是用列方程的方法解答的请举手。
确实,方程也是解决问题的一种好方法。
(设计意图:
通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)
三、呈现问题,自主探索
1、请你用算术方法或列方程解决下列问题:
每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左边,如果列方程请写在右边。
注意:
我们这一节课只研究根据实际问题列方程,怎样从方程中求出未知数,我们以后会深入讨论。
所以,今天的问题都只要求同学们列出算式或方程,不需要求出结果。
现在开始。
2、学生自由到黑板上写
3、现在请各位同学解释一下自己的方法。
(学生在座位上回答,教师适当提醒学生说出等式两边的含义和列方程所依据的相等关系。
针对解题格式上的问题加以提醒。
统计每道题用算术方法和用代数方法的人数。
4、通过解决刚才的这几个问题,对于做一道题时,是选择列算式还是列方程,你有什么感想?
(生答)
其实呀,方程确实是一种应用很广泛的数学工具,在现实生活中有好多好多的问题可以用方程解决。
下面我们不妨来试试看。
好吗?
通过几道例题,1、让学