锅炉控制系统设计与研究毕业论文Word文件下载.docx

上传人:b****9 文档编号:12993873 上传时间:2022-10-01 格式:DOCX 页数:89 大小:1.18MB
下载 相关 举报
锅炉控制系统设计与研究毕业论文Word文件下载.docx_第1页
第1页 / 共89页
锅炉控制系统设计与研究毕业论文Word文件下载.docx_第2页
第2页 / 共89页
锅炉控制系统设计与研究毕业论文Word文件下载.docx_第3页
第3页 / 共89页
锅炉控制系统设计与研究毕业论文Word文件下载.docx_第4页
第4页 / 共89页
锅炉控制系统设计与研究毕业论文Word文件下载.docx_第5页
第5页 / 共89页
点击查看更多>>
下载资源
资源描述

锅炉控制系统设计与研究毕业论文Word文件下载.docx

《锅炉控制系统设计与研究毕业论文Word文件下载.docx》由会员分享,可在线阅读,更多相关《锅炉控制系统设计与研究毕业论文Word文件下载.docx(89页珍藏版)》请在冰豆网上搜索。

锅炉控制系统设计与研究毕业论文Word文件下载.docx

3.1.1偏差控制方式

3.1.2PID控制方式

3.2循环流量控制

3.3燃烧过程控制

第四章 

锅炉控制系统总体设计

4.1系统功能分析

4.2系统方案设计

4.2.1总体设计思路

4.2.2系统结构

4.3系统硬件配置

第五章 

锅炉控制系统的硬件设计

5.1系统主电路的设计

5.2系统控制电路的设计

5.3系统主要元器件的选择

5.3.1PLC的选型

5.3.2通信网络配置

5.3.3变频器的选型

5.3.4传感器的选型

5.3.5其他主要元器件的选择

第六章系统软件的设计

6.1S7-300系列PLC简介

6.1.1S7-300编程方式简介

6.1.2S7-300PLC的存储区

6.2PLC控制程序设计

6.2.1PLC控制流程图

6.2.2 

PLC控制程序

第七章监控组态软件设计

7.1组态软件设计特点

7.2项目组态

7.2.1开发平台和运行环境

7.2.2项目结构

7.2.3项目任务

7.3界面设计

7.4报警记录

结论

参考文献

附录1

附录2

外文文献翻译

致谢

随着城市建设的迅速发展,我国北方地区冬季城市集中供暖成为城市现代化必然采取的步骤。

而供暖面积的不断扩大,使如何科学有效地控制和管理供暖系统,提高供暖的经济效益和社会效益,成为急需解决的重要课题。

在供暖系统中,锅炉房供暖所占比例很大,据对我国北方地区29个大中城市近3.5亿平方米的供暖调查,锅炉供暖占84%,热力供暖占12%,其他供暖占4%。

在今后相当长的时间内,集中热力供暖是发展趋势,但无法取代锅炉供暖的主流地位。

锅炉是消耗能源、产生大气污染、事关生产与生活和安全的重要设备,它在国民经济整个能源消耗中占有相当大的比重。

目前我国供暖锅炉以燃煤链条锅炉为主,燃用的主要是中、低质煤,而且锅炉房管理水平不高,一直沿用间断运行方式,锅炉技术含量低,锅炉的自动化控制技术落后,造成了严重的能源浪费和环境污染。

据统计,我国目前拥有工业锅炉50万台,每年消耗的燃煤占全国原煤产量的三分之一,约4亿吨。

锅炉每年排放烟尘约620万吨,约510万吨,此外还有大量的N02等有害气体,成为我国大气煤烟型污染的主要来源之一,尤其是燃煤排放的CO,气体所引起的温室效应,早己引起国际关注。

本系统供暖锅炉自动控制系统,主要由进口变频器、可编程控制器、压力变送器、温度变送器和泵房机组以及电气控制柜等组成。

其中泵房机组包括:

1#引风机为90kw,变频启动和调速;

2#鼓风机37kw,变频启动和调速;

3#、4#循环水电机为75kw,变频启动和调速;

其余电动机10台,均为直接启动,功率为5kw,工频运行。

本设计是供暖锅炉自动控制系统,设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。

该控制系统由可编程控制器、变频器、压力变送器、温度变送器和泵房组、工控机以及电气控制柜等构成。

系统通过变频器控制电动机的启动、运行和调速。

由于供暖锅炉系统中的风机、水泵负载转矩与转速的平方成正比,轴功率与转速的立方成正比,采用交流变频调速控制风机、水泵流量代替传统阀门、挡板控制流量,可以大大节省该类负载的驱动电机的耗电量,.达到节能的目的,如果普遍采用交流变频调速,平均节电率在30%左右。

用变频器启动风机、水泵等电动机,由于变频器内部具有矢量转矩控制技术,保证了电机良好的启动性能,实现电机软启动,有效地限制了电机的启动电流,明显降低电机启动噪声。

同时,电机的软启动避免了频繁的工频启动对风机、水泵等大电机的冲击,有效地保护设备,延长设备使用寿命。

锅炉的计算机控制使锅炉始终处于最佳工作状态,提高了锅炉的运行效率和燃煤的燃烧效果,不仅节约燃煤,也减少了烟尘和有害气体的排放,具有较好的环保效果。

同时,计算机控制系统通过各种传感器检测锅炉温度、压力、流量等参数,传送至微机和仪表盘,并实现温度和压力等参数的自动控制,工人在计算机控制室就可以全面了解锅炉房各部分的运行情况,大大改善了工人的工作条件,提高了自动化程度和管理水平。

因此,采用锅炉的计算机控制和变频控制不仅可大大节约能源,促进环保而且可以提高生产自动化水平,具有显著的经济效益和社会效益。

1.2 

供暖锅炉控制的国内外研究现状

当前,节能与环保已成为人类社会面临的两大课题。

我国的锅炉目前以煤为主要燃料,耗煤量接近全国煤产量的三分之一,燃用的主要是中、低质煤,工业污染十分严重,而且锅炉设备陈旧,生产效率和自动化程度低,进一步加重了环境污染的程度。

在欧美和日本等发达国家,石油和天然气已成为第一能源,占能源消费的60%左右,燃油和燃气锅炉的已逐步取代燃煤锅炉,对风机和水泵等电机的变频控制已相当成熟自20世纪90年代以来,随着超大型可编程控制器的出现和模糊控制、自适应控制等智能控制算法的发展以及智能控制器的应用,锅炉控制水平大大提高,已实现优化控制国内对锅炉控制的研究起步较晚,始于80年代初期。

国内研究锅炉控制比较成熟的企业有上海杜比公司、南京仁泰公司等,但仍然存在一些问题:

1、 

大多数现有的锅炉控制系统可控制的主要还是开关量设备,如风机、炉排和水泵的开关或者阀门控制。

不能对它们精确连续调节,使控制手段单,控制精度低。

2、 

锅炉控制系统的控制方案不够合理,锅炉控制器(计算机或可编程控制器)一旦出现故障,只能采取系统断电处理,进行人工操作。

若锅炉系统中的传感器、变送器等设备出现故障时,温度、压力等参数就无法达到设定值。

3、 

我国自70年代末开始,锅炉的微机控制逐渐成熟起来,但主要实现仪表显示、报表打印等功能,并未实现锅炉自动控制,下位机主要以单片机为主,控制水平有限,可靠性不够高。

1.3 

本文所做工作

针对目前供暖锅炉控制的现状,本文主要做了以下工作:

提出系统控制方案。

本文针对供暖锅炉自动控制系统,设计一套基于变频调速技术的锅炉监控系统。

本文提出对锅炉供暖系统中的风机和水泵等通过变频器来调节电机的转速,节省了大量的电能。

本系统中丰位机采用高可靠性的工业控制计算机,对锅炉控制系统统一调度和监控管理,下位机采用西门子公司S7-300可编程控制器,实现锅炉燃烧系统和管网系统的自动控制,控制水平和硬件可靠性大大提高。

键技术,本系统的主要设计任务是锅炉系统的变频改造,因此本文详述变频调速技术在锅炉控制中的应用变频调速技术是关,并分析变频调速应用在锅炉供暖系统带来的节能效果。

2、本系统的主要设计任务是锅炉系统的变频改造,变频调速技术是关键技术,因此本文详述变频调速技术在锅炉控制中的应用,并分析变频调速应用在锅炉供暖系统带来的节能效果。

阐述供暖锅炉控制的控制原理,提出供暖锅炉系统的控制模型。

简要介绍PID控制算法,并运用PID控制方式进行系统的补水控制、循环流量控制、燃烧过程控制以及炉膛负压控制。

4、 

锅炉控制系统的总体设计。

本文讨论了锅炉控制系统的设计日标、功能分析和控制方案。

并详细介绍了整个系统的硬件结构和通讯配置口。

5、 

下位机控制系统的设计。

本文首先根据系统控制要求确定PLC的选型以及模块的选择;

讨论PLC与上位机之间、PLC与变频器之间的通讯配置,制定通信协议;

设计PLC控制程序,给出主程序、基础功能块和各子程序的设计流程图和部分梯形图程序。

6、 

上位机监控组态软件设计。

上位机监控系统完成对整个系统的监控管理,本文选用三维力控PCAuto3.6设计,根据用户提出的要求完成了操作界面及控制程序、实现超温超压报警联动、历史数据查询等功能。

第二章变频调速在供暖锅炉控制中的应用

目前,随着大规模集成电路和微电子技术的发展,变频调速技术己经发展为一项成熟的交流调速技术。

变频调速器作为该技术的主要应用产品经过几代技术更新,己日趋完善,能够适应较为恶劣的工业生产环境,且能提供较为完善的控制功能,能满足各种生产设备异步电动机调速的要求。

变频 

调 

速 

技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:

其中表示电机转速;

为电动机工作电源频率;

为电机转差率;

为电机磁极对数。

通过改变电动机工作电源频率达到改变电机转速的目的。

变频器就是基于上述原理采用交一直一交电源变换技术,集电力电子、微电脑控制等技术于一身的综合性电气产品。

由于变频调速可以实现电机无级调速,具有异步电机调压调速和串级调速无可比拟的优越性,在锅炉系统中得到广泛的应用。

变频调速在供热锅炉系统中主要应用在风机调速和水泵调速。

通常在锅炉燃烧系统中,根据生产需要对风速、风量、温度等指标进行控制和调节以适应用户要求和运行工况。

而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。

这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。

在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。

从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。

在供暖锅炉系统中带有循环泵、补水泵等水泵类设备,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。

这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏,还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备而影响生产。

目前,风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。

不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现

泵损坏同时电机也被烧毁的现象。

近年来,出于节能的迫切需要和对供暖质量不断提高的要求,加之采用变频调速器〔简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点,因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。

用变频器来对异步交流电动机调速,是八十年代末迅速发展成熟的一项高新技术。

它的优点是:

调速的机械特性好,调速范围广,调整特性曲线平滑,可以实现连续、平稳的调速,尤其当它应用于风机、水泵等大容量负载时,可获得显著的节能效果。

变频调速应用于锅炉系统的风机和水泵等电机的自动控制中,其节能效果明显。

本节将以风机节能为例,详细分析其节能效果。

水泵的节能分析类似。

由流体力学的基本定律可知:

风机、泵类设备均属平方转矩负载,其转速与流量,压力以及轴功率具有如下关系:

 

即流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。

图2-1给出了风机中风门调节和变频调速二种控制方式下风路的压力-风量关系及功率-风量关系。

其中,曲线1是风机在额定转速下的曲线,曲线2是风机在某一较低速度下的曲线,曲线3是风门开度最大时的曲线,曲线4是风机在某一较小开度下的曲线可以看出当实阮工况风量由下降到时,如果在风机以额定转速运转的条件调节风门开度,则工况点沿曲线1由点移到点;

如果在风门开度最大的条件下用变频器调节风机的转速,则工况点沿曲线3由点移到点。

显然,点与点的风量相同,但点的压力要比点压力小得多。

因此,风机在变频调速运行方式下,风机转速可大大降低,节能效果明显。

压力 

功率

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1