北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx

上传人:b****1 文档编号:12972063 上传时间:2022-10-01 格式:DOCX 页数:20 大小:281.45KB
下载 相关 举报
北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx_第1页
第1页 / 共20页
北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx_第2页
第2页 / 共20页
北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx_第3页
第3页 / 共20页
北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx_第4页
第4页 / 共20页
北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx

《北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx》由会员分享,可在线阅读,更多相关《北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx(20页珍藏版)》请在冰豆网上搜索。

北京市延庆区届九年级数学上学期期末考试试题Word文件下载.docx

5.如图,在⊙O中,∠BOC=100°

,则∠A等于

A.100°

B.50°

C.40°

D.25°

6.已知∠A为锐角,且sinA=

,那么∠A等于

A.15°

B.30°

C.45°

D.60°

7.把抛物线

向右平移3个单位,再向下平移2个单位,得到抛物线

C.

D.

8.如图,弦AB^OC,垂足为点C,连接OA,若OC=2,AB=4,则OA等于

A.

9.如图,在Rt△ABC中,∠ACB=90°

,CD⊥AB于点D,如果AC=3,AB=6,

那么AD的值为

A.

10.如图,△ABC中,∠A=78°

,AB=4,AC=6.

将△ABC沿图中的虚线剪开,剪下的阴影

三角形与原三角形不相似的是(  )

A.B.C.D.

二、填空题(共6个小题,每题3分,共18分)

11.请你写出一条经过原点的抛物线的表达式.

12.如图,抛物线y=ax2(a≠0)与直线y=bx+c(b≠0)的两个交点坐标分别

为A(-2,4),B(1,1),则关于x的方程ax2-bx-c=0的解为__________.

13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为米.

14.在正方形网格中,△ABC的位置如图所示,则tanB的值为__________.

15.如图,⊙O的半径为2,OA=4,AB切⊙O于点B,弦BC∥OA,连结AC,

则图中阴影部分的面积为.

16.阅读下面材料:

下面是“作角的平分线”的尺规作图过程.

已知:

∠AOB.

求作:

射线OC,使它平分∠AOB.

如图,作法如下:

(1)以点O为圆心,任意长为半径作弧,交OA于E,交OB于D;

(2)分别以点D,E为圆心,以大于

DE的同样长为半径

作弧,两弧交于点C;

(3)作射线OC.

则射线OC就是所求作的射线.

请回答:

该作图的依据是.

三、解答题

17.计算:

18.如图,点C为线段BD上一点,∠B=∠D=90°

,且AC⊥CE于点C,

若AB=3,DE=2,BC=6,求CD的长.

19.求二次函数

的顶点坐标,并在所给坐标系中画出它的图象.

20.小明想要测量公园内一座楼CD的高度.他先在A处测得楼顶C的仰角

30°

,再向楼的方向直行10米到达B处,又测得楼顶C的仰角

60°

,若小明的眼睛到地面的高度AE为1.60米,请你帮助他计算出这座楼CD的高度(结果精确到0.1米).参考数据:

21.为了美化生活环境,小明的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米,设AB的长为x米,矩形花圃的面积为y平方米.

(1)用含有x的代数式表示BC的长,BC=;

(2)求y与x的函数关系式,写出自变量x的取值范围;

(3)当x为何值时,y有最大值?

22.如图,△ABC中,AD是△ABC的中线,点E是AD的中点,连接BE并延长,

交AC于点F.

(1)根据题意补全图形;

(2)如果AF=1,求CF的长.

23.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下.

(1)自变量x的取值范围是全体实数,x与y的几组对应值如下:

x

﹣3

﹣2

﹣1

1

2

3

y

m

其中,m=      .

(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的

一部分,请你画出该函数图象的另一部分.

(3)观察函数图象,写出一条性质.

(4)进一步探究函数图象发现:

①方程x2﹣2|x|=0有  个实数根;

②关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是      .

24.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O的

切线与AC的延长线交于点E,且ED∥BC,连接AD交BC于点F.

(1)求证:

∠BAD=∠DAE;

(2)若AB=6,AD=5,求DF的长.

25.体育测试时,九年级一名学生,双手扔实心球.已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处A点距离地面的高度为2m,当球运行的水平距离为4m时,达到最大高度4m的B处(如图),问该学生把实心球扔出多远?

(结果保留根号)

26.阅读材料:

如果一个矩形的宽与长的比值恰好为黄金比,人们就称它为“黄金矩形”(GoldenRectangle).在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙、法国巴黎圣母院就是很好的例子.

小明想画出一个黄金矩形,经过思考,他决定先画一个边长为2的正方形ABCD,如图1,取CD边的中点E,连接BE,在BE上截取EF=EC,在BC上截取BG=BF;

然后,小明作了两条互相垂直的射线,如图2,OF⊥OG于点O.小明利用图1中的线段,在图2中作出一个黄金矩形OMPN,且点M在射线OF上,点N在射线OG上.

请你帮助小明在图1中完成作图,要求尺规作图,保留作图痕迹.

(1)求CG的长;

(2)图1中哪两条线段的比是黄金比?

请你指出其中一组线段;

(3)请你利用

(2)中的结论,在图2中作出一个黄金矩形OMPN,且点M在射线OF上,点N在射线OG上.要求尺规作图,保留作图痕迹.

图2

图1

27.在平面直角坐标系xOy中,直线y=-x+2与y轴交于点A,点A关于x轴的对称点

为B,过点B作y轴的垂线l,直线l与直线y=-x+2交于点C;

抛物线y=nx2-2nx+n+2

(其中n<0)的顶点坐标为D.

(1)求点C,D的坐标;

(2)若点E(2,-2)在抛物线y=nx2-2nx+n+2(其中n<0)上,求n的值;

(3)若抛物线y=nx2-2nx+n+2(其中n<0)

与线段BC有唯一公共点,求n的取值范围.

 

28.在△ABC中,∠B=45°

,∠C=30°

(1)如图1,若AB=5

,求BC的长;

(2)点D是BC边上一点,连接AD,将线段AD绕点A逆时针旋转90°

得到线段AE.

①如图2,当点E在AC边上时,求证:

CE=2BD;

②如图3,当点E在AC的垂直平分线上时,直接写出

的值.

图3

29.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),

若a=|x1-x2|,b=|y1-y2|,则记作(P,Q)→{a,b}.

(1)已知(P,Q)→{a,b},且点P(1,1),点Q(4,3),求a,b的值;

(2)点P(0,-1),a=2,b=1,且(P,Q)→{a,b},求符合条件的点Q的坐标;

(3)⊙O的半径为

,点P在⊙O上,点Q(m,n)在直线y=-

+

上,

若(P,Q)→{a,b},且a=2k,b=k(k>0),求m的取值范围.

延庆区2016-2017学年第一学期期末试卷

初三数学参考答案及评分标准

一、选择题(本题共30分,每小题3分)

题号

4

5

6

7

8

9

10

答案

B

D

C

A

二、填空题(本题共18分,每小题3分)

11

12

13

14

15

16

-2,1

1.4

0.75

π

三、解答题

17.(本小题满分5分)

解:

原式

……………………………………………………………………4分

.………………………………………………………………………………………5分

18.(本小题满分5分)

∵在△ABC中,∠B=90º

∴∠A+∠ACB=90º

∵AC⊥CE,

∴∠ACB+∠ECD=90º

∴∠A=∠ECD.……………………………………2分

∵在△ABC和△CDE中,

∠A=∠ECD,∠B=∠D=90º

∴△ABC∽△CDE.……………………………………3分

.……………………………………4分

∵AB=3,DE=2,BC=6,

∴CD=1.……………………………………5分

19.(本小题满分5分)

∴顶点坐标为

………………………………2分

如图  ………………………………5分

20.(本小题满分6分)

,∴∠ECF=

=30°

.∴

.

在Rt△CFG中,

.………………………………………………6分

答:

这座教学楼的高度约为10.3米.

21.(本小题满分5分)

(1)32-2x………………………………1分

(2)y=-2x2+32x(11≤x<16)………………………………4分

(3)11………………………………5分

22.(本小题满分5分)

(1)画图………………………………2分

(2)过点D作DG∥BF,交AC于点G.………………………………3分

∵AD是△ABC的中线,

∴CD=DB.

∴CG=GF.

同理AF=GF.

∵AF=1,

∴CG=GF=1.

∴CF=2.…………5分

23.(本小题满分6分)

(1)m=0.……………………………1分

(2)如图所示.………………………2分

(3)略.………………………………3分

(4)①有3个交点……………………4分

②﹣1<a<0.……………………6分

24.(本小题满分5分)

(1)连接OD,

∵ED为⊙O的切线,

∴OD⊥ED.

∵AB为⊙O的直径,

∴∠ACB=90°

∵BC∥ED,

∴∠ACB=∠E=∠EDO.

∴AE∥OD.

∴∠DAE=∠ADO.

∵OA=OD,

∴∠BAD=∠ADO.

∴∠BAD=∠DAE.………………………………2分

(2)连接BD,

∴∠ADB=90°

.

∵AB=6,AD=5,

∴BD=

.……………………………………………………………4分

∵∠BAD=∠DAE=∠CBD,

∴tan∠CBD=tan∠BAD=

在Rt△BDF中,

∴DF=BD·

tan∠CBD=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1